
DEVELOPMENT OF ROBOSIM
FOR

ACADEMIC/INDUSTRIAL USE

- FINAL REPORT-

Prepared by

George E. Cook, PI

Csaba Biegl

James F. Springfield, Jr.

Vanderbilt University

School of Engineering

Box 1826, Station B

Nashville, TN 37235

Telephone: (615) 322-2764

FAX: (615) 343-8006

E-mail: cookge@vuse.vanderbilt.ed u

(NASA-CR-196148) DEVELOPMENT JF

ROBOSIM FOR ACADEMIC/INOUSTRIAL USE

(DisKette Supplement) (Vanderbilt

Univ.) 180 p

N95-12470

Uncla$

63/63 00160_4

Grant No. NAG8-116

NASA-CR-196148 /_

DEVELOPMENT OF ROBOSIM

FOR

ACADEMIC/INDUSTRIAL USE

FINAL REPORT

NASA Grant No. NAG8-116

f---

Vanderbilt University

SUMMARY

The objectives of this research were to provide enhancements to a graphical

simulation system, ROBOSIM, consisting of additional features considered essential for

many applications, to port the package into a form compatible with lower cost and more

useful engineering workstations, and to develop learning aids and documentation for users

of the sottware package. In order to remain fully compatible with its original FORTRAN-

coded, mainframe computer implementation, the facilities of ROBOSIM were expanded

without changing its structure. This was accomplished by porting the FORTRAN code to

C, keeping ROBOSIM as the kernel, and adding features to the front and back ends.

Features added to the simulator include a modeling environment and an interactive

simulation environment plus a number of advanced capabilities. The advanced features of

the simulator include: composite objects supporting the linking of separate objects into

composite object which can be operated on as a unit while preserving the separat*.

accessibility of its components; configuration management with the provision of a:a

automatic configuration selection mechanism based on a set of heuristic rules; collision

detection which provides a way to check for collisions during a simulation run; collision

avoidance where the simulator provides a heuristic path planning algorithm which is

capable of recovering from collision situations to provide collision-free path plans; and

interface to control physical robots with the capability of generating command sequences

for real robot controllers.

Implementations of the simulator have been developed for the Hewlett Packard

9000/300 and 9000/800 graphics workstation families, Silicon Graphics workstations,

Intergraph workstations, and IBM compatible PCs using Intel 80386 and higher CPUs

with EGA or VGA displays. The display mode may be wire-frame or shaded solid

modeling for the workstation implementations. Currently, the PC version displays in wire-

frame mode only. While currently limited to wire-frame displays, the PC version is quite

fast, offering displayed manipulator motions at speeds normally well in excess of the

hardware being simulated.

Included in this report is a Manual, Tutorial, and Installation Instructions for

installing and using ROBOSIM and disks containing the program and all examples.

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

TABLE OF CONTENTS

LISTINGS (MODELING AND SIMULATION CODE) ... v

LIST OF FIGURES .. vii

NOMENCLATURE .. x

EXECUTIVE SUMMARY ... xi

1.0

2.0

3.0

4.0

INTRODUCTION ... 1

BACKGROUND ... 3

CREATION OF ROBOT MODELS, POSITIONERS AND OBJECTS: THE

ROBOSIM MODELING ENVIRONMENT .. 5

3.1 Modeling Commands ... 5

3.1.1 Solid primitive commands ... 5

3.1.2 Graphic register control commands ... 6

3.1.3 Surface generation commands ... 6

3.1.4 Model manipulation commands ... 6
3.1.5 File control commands .. 7

3,1.6 Link joint specifications .. 7

3.1.7 Special commands .. 7

3.2 Modeling Example ... 7

OPERATING THE MODELS: THE ROBOSIM SIMULATION

ENVIRONMENT .. 11

4.1 Simulation Commands .. 11

4.1.1 Command format .. 11

4.1.2 Error reporting ... 12

4.1.3 Object creation commands .. 12

4.1.4 Object transformation commands .. ! 3

4.1.5 Composite objects .. 13

4.1.6 Objects created with ROBOSIM modeling language 13

4.1.7 Agents .. 13

4.1.8 Agent positioning ... 14

4.1.9 Position reporting ... 16

4.1.10 Grasping ... 16

4.1.11 General graphics setup .. 18

4.1.12 Physical manipulator control _.............................. 18
4.1.13 General ... 19

4.2 Simulation Example .. 19

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

5.0

6.0

7.0

8.0

ADVANCED FEATURES .. 26

APPLICATIONS ... 39

CONCLUSIONS, FUTURE ENHANCEMENTS .. 45

REFERENCES .. 46

APPENDIX A: COLLISION DETECTION ... 48

APPENDIX B: ROBOSIM USERS' MANUAL ... 53

INTRODUCTION ... 53

GETTING STARTED ... 53

THE ROBOSIM SIMULATION ENVIRONMENT .. 54

Command format ... 55

Error reporting ... 55

Object creation commands .. 57

Object transformation commands ... 57

Composite objects .. 57

Objects created with ROBOSIM modeling language 58

Agents ... 58

Agent positioning ... 58

Position reporting ... 60

Grasping .. 61

General graphics setup ... 62

Physical manipulator control ... 63

General .. 64

THE ROBOSIM MODELING ENVIRONMENT ... 64

Solid primitive commands .. 65

Graphic register control commands .. 65

Surface generation commands .. 66

Model manipulation commands .. 67

File control commands ... 67

Special commands .. 68

Link joint specification ... 68

APPENDIX C: ROBOSIM TUTORIAL .. 69

Getting Started .. 69

Creating and Driving a Robot .. 70

Robot Positioning Commands .. 72

Using the ROBOSIM Modeler ... 77

Using a Command File ... 79

Examples ... 80

iii

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

APPENDIX D: ROBOSIM INSTALLATION INSTRUCTIONS 81

System Requirements ... 81
Installation ... 81

Operation ... 84

APPENDIX E: EXAMPLE FILES AND GRAPHIC DISPLAY 85

EXAMPLE 1: OBJECT CONSTRUCTION ... 85

EXAMPLE 2: FRAME ROTATIONS .. 89

EXAMPLE 3: CONSTRUCTION OF ROBOT AND ASSIGNMENT OF LINKS93

EXAMPLE 4: ROBOT REMOVAL/INSERTION OF MODULE 101

EXAMPLE 5: CONSTRUCTION OF 3-REVOLUTE JOINT ROBOT 109

EXAMPLE 6: 6-AXIS OVERHEAD ROBOT ... 116

EXAMPLE 7: WATERBLAST REFURBISHMENT OF SRB COMPONENT 125

EXAMPLE 8: SPACE STATION CONCEPT WITH SERVICING ROBOT 137

iv

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

Listing 1.

Listing 2.

Listing 3.

Listing 4.

Listing 5.

Listing 6.

Listing 7.

LISTINGS (MODELING AND SIMULATION CODE)

ROBOSIM Model of PUMA 560 Link .. 8

Configuration Commands for Figure 2 .. 9

Setup Commands for Arc-Welding Workcell Shown in Figure 3 23

Weld Command Sequence for First Quadrant Weld on Bottom Assembly 24

Motion Commands for Object Removal/Insertion Demonstration, Figure 8 29

Move Forward Command Sequence, Figure 8 ... 29

Move Back Motion Command Sequence, Figure 8 .. 30

APPENDIX E: .. 85

EXAMPLE 1: OBJECT CONSTRUCTION ... 85

FILE: SETUP.CMD .. 85

FILE: OBJECT.DAT ... 86

EXAMPLE

FILE:

FILE:

FILE:

FILE:

FILE:

2: FRAME ROTATIONS .. 89

SETUP.CMD .. 89

X-AXIS.DAT .. 90

Y-AXIS.DAT .. 91

Z-AXIS.DAT .. 91

2-FRAMES ... 92

EXAMPLE 3: CONSTRUCTION OF ROBOT AND ASSIGNMENT OF LINKS93

FILE: SETUP.CMD .. 93

FILE: ARM.DAT .. 94

FILE: DEMO.CMD ... 98

EXAMPLE 4:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

ROBOT REMOVAL/INSERTION OF MODULE 101

SETUP.CMD .. 101

DEMO.CMD ... 102

MOVEFORW.CMD .. 102

MOVEBACK.CMD .. 102

PUMA560.DAT .. 103

PUMA560.KIN ... 108

EXAMPLE 5: CONSTRUCTION OF 3-REVOLUTE JOINT ROBOT 109

FILE: SETUP.CMD .. 110

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

FILE:

FILE:

FILE:

3R-ROBOT.DAT .. 111

H (HOME POSITION VECTOR) ... 114
DEMO.CMD ... 114

EXAMPLE 6: 6-AXIS OVERHEAD ROBOT ... 116

FILE: SETUP.CMD .. 117

FILE: HANG-ROB.DAT ... 118

FILE: DEMO.CMD ... 123

EXAMPLE

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

7: WATERBLAST REFURBISHMENT OF SRB COMPONENT 125

SETUP.CMD .. 125

SRB.DAT .. 127

T-TABLE.DAT ... 127

JET.DAT ... 128

STAND.DAT .. 129

T3-MM.DAT .. 130

POS ... 135

DEMO.CMD ... 135

EXAMPLE

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

FILE:

8: SPACE STATION CONCEPT WITH SERVICING ROBOT 137

SETUP.CMD .. 138

SUBCELLS.DAT .. 139

BELT.DAT ... 140

MAINCLS 1 .DAT .. 144

2CUBES.DAT ... 146

MAINCLS2.DAT .. 148

MAIN.DAT ... 151

CELLS.DAT ... 151

ATTBARS.DAT ... 153

MAINCELL.DAT ... 153

SUBFRAME.DAT .. 155

LIVINMOD.DAT ... 157

DISHES.DAT ... 161

DEMO. CMD ... 162

vi

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

LIST OF FIGURES

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

ROBOSIM modeling environment .. 9

An example ROBOSIM screen .. 10

Simulated arc-welding workcell .. 20

Laser printout of welding workcell .. 21

Welding first two parts of assembly ... 24

Close-up of welding operation .. 25

Completed weld .. 25

Simulation of object removal/insertion for demonstration of configuration

management, collision detection, and collision avoidance (object on let_ side).. 28

Simulation of object removal/insertion for demonstration of configuration

management, collision detection, and collision avoidance (object on right side

and ceiling lowered by 250 units to cause collision with robot when fully

extended) .. 30

Robot in position to grasp object for removal, solution index 0 31

Robot at module insertion position, solution index 0 31

Robot in position to grasp object for removal, solution index 3 32

Robot at module insertion position, solution index 3 32

Robot in position to grasp object for removal, solution index 4 33

Robot at module insertion position, solution index 4 33

Robot in position to grasp object for removal, solution index 7 34

Robot at module insertion position, solution index 7 34

Robot arm fully extended as it swings from home position to grasping position35

Collision occurs when ceiling is lowered, calling for new strategy from path

planning heuristics ... 35

vii

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure E. 1.

Figure E.2.

Figure E.3.

Figure E.4.

Figure E.5.

Figure E.6.

Figure E.7.

Figure E.8.

Path planning heuristics successfully avoids collision by "folding" third joint as

second joint swings through its motion .. 36

Having successfully avoided collision with lowered ceiling, path planning

heuristics continue with attempt to reach target from intermediate position

with simple joint-interpolated motion .. 36

Second collision occurs when arm moves from intermediate position needed

to avoid first collision by simple joint-interpolated motion 37

Path planning heuristics avoid second collision by temporarily swinging first

joint beyond its target value .. 37

Final target position reached by avoiding two collisions 38

[Top] Students manipulating a robot servicing scenario on a space station

concept. [Bottom] Space station concept with servicing robot (in red) 40

PUMA 560 robots in a dual-robot, coordinated motion welding application.

[Top] Physical robots. [Bottom] Simulation ... 41

[Top] Cincinnati Milacron T3 robots. [Bottom] Construction of components 42

Optimum downhand welding on the space shuttle main engine nozzle with

coordinated motion ofpositioner and manipulator ... 43

Simulated saddle weld on space station berthing port concept. [Top] Shaded

modelling. [Bottom] Wireframe modelling .. 44

Sample display for Example 1... 89

Sample display for Example 2 ... 92

Sample display for Example 3 ... 100

Sample display for Example 4 ... 109

Sample display (number 1) for Example 5 ... 116

Sample display (number 2) for Example 5 ... 116

Sample display (number 1) for Example 6 ... 124

Sample display (number 2) for Example 6 ... 125

viii

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

Figure E.9. Sample display for Example 7 ... 137

Figure E. 10. Space station concept (sample display number 1), Example 8 164

Figure E. 11. Space station concept (sample display number 2), Example 8 164

Figure E. 12. Space station concept (solar panels), Example 8 ... 165

Figure E. 13. Space station concept (solar panels -2), Example 8 165

Figure E. 14. Space station concept (sample display number 5), Example 8 166

Figure E. 15. Space station servicing robot (sample display number 1), Example 8 166

Figure E. 16. Space station servicing robot (sample display number 2), Example 8 167

Figure E. 17. Space station servicing robot (sample display number 3), Example 8 167

Figure E. 18. Space station servicing robot (sample display number 4), Example 8 168

ix

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

NOMENCLATURE

CAD

CPU

EGA

GUI

OMV

PC

ROBOSIM

SRB

SSME

VGA

Computer Aided Design

Central Processing Unit

Enhanced Graphics Adapter

Graphical User Interface

Orbital Maneuvering Vehicle

Personal Computer

Robot Simulation System

Solid Rocket Booster

Space Shuttle Main Engine

Video Graphics Adapter

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

EXECUTIVE SUMMARY

Objectives:

The objectives of this research were to provide enhancements to a graphical

simulation system, ROBOSIM, consisting of additional features considered essential for

many applications, to port the package into a form compatible with lower cost and more

useful engineering workstations, and to develop learning aids and documentation for users

of the software package. In order to remain fully compatible with its original FORTRAN-

coded, mainframe computer implementation, the facilities of ROBOSIM were expanded

without changing its structure. This was accomplished by porting the FORTRAN code to

C, keeping ROBOSIM as the kernel, and adding features to the front and back ends.

Research Conducted:

Features added to the simulator include a modeling environment and an interactive

simulation environment plus a number of advanced capabilities. The advanced features of

the simulator include: composite objects supporting the linking of separate objects into a

composite object which can be operated on as a unit while preserving the separate

accessibility of its components; configuration management with the provision of an

automatic configuration selection mechanism based on a set of heuristic rules; collision

detection which provides a way to check for collisions during a simulation run; collision

avoidance where the simulator provides a heuristic path planning algorithm which is

capable of recovering from collision situations to provide collision-free path plans; and

interface to controlphysical robots with the capability of generating command sequences
for real robot controllers.

Implementations:

Implementations of the simulator have been developed for the Hewlett Packard

9000/300 and 9000/800 graphics workstation families, Silicon Graphics workstations,

Intergraph workstations, and IBM compatible PCs using Intel 80386 and higher CPUs

with EGA or VGA displays. The display mode may be wire-frame or shaded solid

modeling for the workstation implementations. Currently, the PC version displays in wire-

frame mode only. While currently limited to wire-frame displays, the PC version is quite

fast, offering displayed manipulator motions at speeds normally well in excess of the

hardware being simulated.

User Aids:

Included in this report is a Manual, Tutorial, and Installation Instructions for

installing and using ROBOSIM and disks containing the program and all examples.

xi

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

1.0 _TRODUCTION

ROBOSIM is a graphical simulation system used for three-dimensional geometrical

modeling of robot manipulators and various objects in their workspace, and for the

simulation of action sequences performed by the manipulators. ROBOSIM was originally

conceived and developed between 1985-88 by NASA-MSFC and Vanderbilt University as

a means of rapid prototyping of robotics systems [1]. This early version of the simulation

system was written in FORTRAN and was developed for DEC VAX mainframe

computers with TEKTRONIX 4014 terminals and also Evans & Sutherland graphics

terminals. Robots and other objects in the simulated environment were specified through

a program that the user wrote. After a robot had been designed, the user could solve the

inverse kinematics problem for a set of points and store the results in a file. This file could

then be read back in and used to display the robot at the stored points. The TEKTRONIX

terminal provided a low-cost, low-speed way to view the robot while the Evans &

Sutherland terminal allowed high-speed display. However, both could only display wire-

frame models.

The original version of ROBOSIM was basically a robot modeling tool. It did not

contain a simulator for operating, from high-level commands, the robots modeled. It also

did not contain collision detection capabilities, and it did not possess any advanced

features of artificial intelligence-based collision avoidance or path planning capabilities.

Despite these shortcomings, ROBOSIM was used at the MSFC in a number of space

related activities including: development of off-line welding programs for robots used in

fabricating the Space Shuttle Main Engine (SSME), integration of a vision sensor into a

robotics workcell used for Solid Rocket Booster (SRB) refurbishment, and planning of a

robot mechanism to be mounted on the Orbital Maneuvering Vehicle (OMV). At

Vanderbilt University, ROBOSIM was used in robot manipulator classes and as a research

tool for robot task planning.

The advent of high-speed graphics workstations provided the impetus to port

ROBOSIM to these engineering platforms. Also, it was recognized that a number of

functional enhancements would be necessary if ROBOSIM were to find widespread

usefulness in the industrial and academic environments. To meet these goals, the subject

grant Development of ROBOSIM for Academic/Industrial Use was awarded to Vanderbilt

University. The objectives of the grant were to enhance ROBOSIM with additional

features considered essential for many applications, to develop learning aids and

documentation for users of the software package, and to port the package into a form

compatible with lower cost and more useful engineering workstations.

This Final Report describes the results of this work. In order to remain fully

compatible with the VAX implementation, it was desired to expand the facilities of

ROBOSIM without changing its structure. This has been accomplished by porting the

FORTRAN code to C, keeping ROBOSIM as the kernel, and adding features to the front

and back ends [2,3]. These features include a modeling environment and a simulation

environment and advanced features including composite objects, configuration

-1-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

management, collision detection (see Appendix A), collision avoidance, and interface to

physical robots. Implementations of the simulator have been developed for the Hewlett

Packard 9000/300 and 9000/800 graphics workstation families, Silicon Graphics

workstations, Intergraph workstations, and IBM compatible PCs using Intel 80386 and

higher CPUs with EGA or VGA displays. The display mode may be wire-frame or shaded

solid modeling for the workstation implementations. Currently, the PC version displays in

wire-frame mode only. While currently limited to wire-frame displays, the PC version is

quite fast, offering displayed manipulator motions at speeds well in excess of the hardware

being simulated.

This report describes the new intelligent simulation system that has been developed

in terms of ROBOSIM's modeling environment and interactive simulation environment.

Commands used in the modeling and simulation environments are described in the Manual

included in Appendix B. Appendix C contains a Tutorial for getting started in using the

simulation system, and Appendix D contains Installation Instructions. Appendix E

contains examples of code and graphic display for various simulations. A disk containing

the executable code, manual, tutorial, and installation instructions is attached to the rear

inside cover of this manual.

-2-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

2.0 BACKGROUND

Geometrical modeling of robot manipulators is an expanding area of research

because it can aid in the design and usage of robots in a number of ways [4]:

• Design and testing of manipulators: The purpose of the modeling is to study

different approaches to satisfy the design specifications of the manipulator.

Robot action planning: The modeling environment is used to build a

representation of the robots, positioners, and other mechanisms with moving

joints, and the objects in the workspace for creating and validating action plans

by simulating the effect of these actions in the model space.

On-line control of robot manipulators: The simulated action plans generated

in the model space are transmitted (after validation) to the attached robot

manipulators for execution.

• Training and education: Robotics simulation packages provide an inexpensive

and safe way to teach the theory and operation of robot manipulators.

Telerobotic user interface: In applications where the operator of the robot has

to be at a large distance from the workcell (radiation, space, etc.) realistic

graphical simulation can be used for better interaction with the manipulator.

To satisfy all or some of the above goals, a robotics modeling and simulation

package has to provide the following minimal features:

A way to build models of solid objects. This requires the facilities to create a

set of solid primitives (like boxes, cylinders, cones, etc.) and some services to

combine these into more complex shapes.

• A way to add the necessary kinematic (an possibly dynamic) information to the

above models of solid objects to turn them into robot manipulator links.

• A way to assemble models of robot manipulator links and other solid objects

into complete models of robotic work cells.

A way to manipulate the models. This includes methods for accessing and

animating objects, routines for forward and inverse kinematics calculations,

and graphics display.

Advanced robot simulation environments can also support one or more of the

following:

-3-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt Unlvers|ty

• Path planning services for moving the manipulator along various trajectories.

(straight-line, etc.)

• Collision detection and collision avoidance services.

• Simulation of manipulator dynamics to obtain the forces and torques on the

links of the manipulator ann and to enforce their limits.

The following sections of this report describe how some of the features described

above have been implemented in the ROBOSIM package.

-4-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

3.0 CREATION OF ROBOT MODELS, POSITIONERS AND OBJECTS: THE

ROBOSIM MODELING ENVIRONMENT

Models of robot manipulators, positioners, and other mechanisms with moving

joints, and objects that make up the complete simulated environment are constructed in

ROBOSIM's modeling environment. ROBOSIM also provides a simulation environment

where every command entered by the user is executed and the results are displayed on a

graphics screen. From this interactive environment users can change the simulation

scenario and operate the robot manipulator models previously constructed in the modeling
environment. This section describes the modeling environment. The simulation

environment is described in section 4.0.

Similarly to other solid modeling software tools, ROBOSIM models the three

dimensional geometric objects using lists of their bounding polygons. The ROBOSIM

modeling language is used to specify complex geometric shapes which are used as

manipulator links or as passive cylinders, cones, extruded polygons, etc. Translational,

rotational and scaling transformations are used to combine these objects to form the

desired shape.

The ROBOSIM modeling language mimics a "geometric microprocessor" [1]

which has a few graphics registers Ca" through "d") containing the three dimensional

polygon lists of the complex object being built. There is a designated accumulator register

("a"). Whenever, a new elementary shape (box, etc.) is created, it is concatenated to the

contents of the accumulator register. Similarly to the basic shape generation primitives,

the geometrical transformations also operate on the contents of the accumulator register.

This, together with the ability to move or concatenate geometric data to or from the other

registers enables the definition of arbitrary complex shapes in terms of a few basic

operations. Link coordinate frames can also be added to the contents of the accumulator

register thus making it possible to specify the geometric transformations associated with

the links of a manipulator. The ROBOSIM modeling language is described below.

3.1 Modeling Commands

3.1.1 Solid primitive commands

All solid objects are created with their center of mass at the origin of the world

coordinate system and their principal axis parallel with the z-axis. The commands are:

box x--X y=Y z=Z

cylinder r=R h--H

cone r=R h--H

sphere r=R

In each case, the solid primitive is generated in the "a" register with appropriate mass

properties. In each of the commands, the order ofthe arguments is up to the user.

-5-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt University

3.1.2 Graphic register control commands

Contents &the graphic registers are manipulated with the following commands:

clear

store b or c or d

load b or c or d

exchange b or c or d

add b or c or d

3.1.3

Clears the contents of the "a" graphics register.

The contents of the "a" graphics register are stored in one of

the temporary graphics registers (b,c,d). The contents of

the "a" register are unchanged.

The contents of the b or c or d register are copied into the

"a" graphics register destroying its previous contents and

leaving the b or c or d register unchanged.

The contents of the b or c or d register are exchanged with

the contents of the "a" graphics register.

The contents of the b or c or d register are appended to the

contents of the "a" graphics register leaving the b or c or d

register unchanged.

Surface generation commands

Surfaces are generated with the following commands:

vector x=X y=Y z=Z

move x=X y=Y z=Z

draw x=X y=Y z=Z

rev-surface

extrude-surface z=Z

Generates a vector from the origin to (X,Y,Z) in the "a"

graphics register.

Generates a non-visible vector from the previous vector tip

to (X,Y,Z) in the "a" graphics register.

Generates a visible vector from the previous vector tip to

(X,Y,Z) in the "a" graphics register.

Generates a surface by revolving the contents of the "a"

register about the z-axis.

Generates a surface by sweeping the graphical contents of

the "a" register along the z-axis.

3.1.4 Model manipulation commands

The primitive elements of the

commands:

model are manipulated with the following

-6-

Final Report: Development of ROBOSIM for Acadendc/Industrlal Use VanderbHt University

translate x=X y=Y z=Z Translates the graphical contents of the "a" register the

specified relative distance.

rotate x=X or y=Y or z=Z Rotates the graphical contents of the "a" register by the

specified angle in degrees about the x, y, or z axes of the

world coordinate frame.

scale x=Xy=Yz=Z Multiples the graphical contents of the "a" register by the

specified amounts along the x, y, and z axes.

3.1.5 File control commands

execute-file fname The ROBOSIM commands contained in the external file,

fname, are placed in place of this instruction. All commands

are allowed except "execute-file" itself.

store-file fname Stores the graphical and mass properties contained in the

"a" register into the file (fname) specified. The contents of

the "a" register are unchanged.

3.1.6 Link joint specifications

(r, p, or f)-joint-(i or i+l) A revolute, prismatic, or fixed joint is specified by the prefix

r, p, or f, respectively. The suffix 'T' indicates the joint is

closer to the robot base than the joint specified with suffix

"i+l ".

3.1.7 Special commands

end Terminates execution of the ROBOSIM process.

set-nface n=N Sets the number of facets generated to approximate a circular

surface. This specification affects the solid primitive routines and

rev-surface command.

set-density d=D Sets the default mass-density for solids defined by the primitives,

extrude and rev-surfaee command.

3.2 Modeling Example

Listing 1 shows an example ROBOSIM source listing which models a link of the

PUMA 560 manipulator arm. Other links of the arm are modeled similarly.

-7-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

; Base Link - 10

clear

cylinder r=88.90 h=533.40

translate x=0.00 y=0.00 z=328.93

store b

clear

cylinder r= 177.80 h=25.40

translate x=0.00 y=0.00 z=49.53
add b

store b

clear

cylinder r=203.20 h=36.83

translate x=O. O0 y=O. O0 z= 18.41

f-joint-i

add b

store b

clear

cylinder r=38.10 h=152.40

translate x=0.00 y=0.00 z=127.00

box x=127.00 y=101.60 z=101.60

translate x=0.00 y=152.40 z=50.80

add b

store b

clear

r-joint-i+ 1

translate x=0.00 y=0.00 z=671.83
add b

store-link puma560.10

Listing 1. ROBOSIM Model of PUMA 560 Link

Once the ROBOSIM language interpreter finishes the processing of the code

describing a solid shape, the resulting polygon list in the accumulator register is converted

into a named object in the robot simulator package's workspace. Thus the modeling of

robot arm and geometric scenarios is a two step process as follows:

• modeling the geometric shapes, robot links, etc., which are used to build the
scenario.

creating one or more named, distinguishable object instances of these shapes in

the simulator's workspaee. These object instances can be individually

manipulated upon, moved around, etc., from the interactive environment of the
simulator.

-8-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

Figure 1 shows the structure of the ROBOSIM modeling environment described

above, while Listing 2 shows an example command sequence which can be used to set up

the scenario shown in Figure 2.

RMOBOSIM

odules

I SetupFiles

To Display To Robots

? ?

Module Co_rol

1J "_Interpreter Simulation

Object

_(Simulation Instances
Command

Shell

(Collision)___(Animation)__ , oem,tics)Detection

Figure 1. ROBOSIM modeling environment.

; SETUP.CMD

define-color red 1 0 0;

define-color green 0 1 0

define-color blue 0 0 1

look-at 0 0 700;

look-from 0 5000 1000

make-agent r puma560 red;

make-object floor box 2000 2000 60 green;

translate-object floor z=-31

make-object xx box 200 10 100 blue;

define-grasping-point xx -180 0 0 -90 0 -90

translate-object xx x=900 y=300 z-=800

make-object top cylinder 200 10 blue;

translate-object top z=1650

end

COLOR DEFINITIONS

VIEW COMMANDS

ROBOT - R

FLOOR

OBJECT - XX

TOP - CYLINDER

Listing 2. Configuration Commands for Figure 2.

-9-

Final Report: Development of ROBOSIM for Acadendc/Indmtrlal Use Vanderbilt Unlveralty

ROBOSIM

0

r-1

,_j:::::::::....................:::::::::::::::::::::
// _ _.,,

// \],,
.;,/, .. .¢ ,

ROBAG _J_l

ROBARG >

Figure 2. An example ROBOSIM screen.

-10-

Final Report: Development of ROBOSIM for Academic/Industrial U_e Vanderbilt University

4.0 OPERATING THE MODELS: THE ROBOSIM

ENVIRONMENT

SIMULATION

The ROBOSIM package provides an interactive simulation environment where

every command entered by the user is immediately executed and the results are displayed

on a graphics screen. From this interactive environment users can change the simulation

scenario and operate the robot manipulator models in the system. The commands

available can be grouped as follows:

Environment configuration: Besides the modeling services discussed above

additional commands are available for the setting of global parameters like

camera position, display mode, light source, etc. The graphics display module

of the simulator supports different display options like wireframe, hidden line,

solid filled and shaded graphics depending on the capabilities of the hardware

platform.

Manipulator control: There are commands available for moving the models of

manipulator arms in various modes: joint interpolated, straight-line, rotation

about an arbitrary axis, etc. Manipulator coordinates can be specified both in

joint and world coordinates. The simulator has a built-in interactive inverse

kinematics algorithm, but the user can also specify an explicit inverse

kinematics method for his or her manipulator if such a method is available.

Additionally, the objects in the workspace can be grasped, moved and released

by the robots. If the scenario contains several manipulators these can be

operated in parallel.

Status reporting: Reports about different aspects of the simulator's operation

(arm position, collision situations, etc.) can be obtained by using one of the

appropriate commands from this group.

The command language of the ROBOSIM simulation environment has been

designed with two goals in mind: (1) to provide an interactive user interface, and (2) to be

usable as the interface to a higher-level task planner program. In the second application

the task planner and the robot simulator are typically interfaced using some kind of pipe

mechanism and the task planner outputs similar command sequences as entered by users in

interactive applications. For this reason the command language has intentionally been kept

simple. A description of each of the ROBOSIM simulation environment commands is

given below.

4.1 Simulation Commands

4.1.1 Command format

-11-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

The simulator uses a character stream command protocol. Commands can be

entered from the system console, loaded from a file, or sent by another program using the

pipe mechanism provided by the operating system. The general format is:

[<label>:] <command> <argl> ... <argN> [; comment]

Multiple agent (robot) movement commands per command line are possible. The

individual commands are separated by commas. Each of the commands may be directed

to a different agent in the system, which will execute the commands in parallel. The

execution of the next command line begins when the last agent finishes its operation. In

contrast, if commands to two different agents are placed into consecutive command lines,

the execution of these commands will be sequential.

4.1.2 Error reporting

While processing a command stream, the simulator generates an error log stream.

For each command line which could not be completed successfully, there will be an entry

in this stream. The format of this entry is the following:

*** Error in line [labehNNNINNN] -- <code> <message>

If there were a label preceding the command containing the error, then the error

message will contain the name of the last seen label and the number of lines read since the
last label was encountered. If the command stream did not contain labels, then the error

message will contain the number of the command line counted from the beginning of the

stream.

4.1.3 Object creation commands

The following object creation command creates an object in the workspace of the

simulator:

make-object <object name> <object type> <parameters>

Various object types have been defined, they and their parameters are described

below.

box <xsize> <ysize> <zsize> [<color>]

cylinder <radius> <height> [<color>]

cone <radius> <height> [<color>]

truncated-cone <radiusl> <radius2> <height> [<color>]

sphere <radius>]<color>]

All solid objects are created with their center of mass at the origin of the coordinate

system and their principal axis parallel with the z-axis. The optional color parameter is the

- 12-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbflt University

name of a user defined color (see later). All other parameters are numbers. The simulator

does not make any assumptions about the physical units used, it is the responsibility of the

user to specify the sizes of each object in a coherent way.

4.1.4 Object transformation commands

The object transformation commands available in the simulator are:

translate-object <object> x=<xtran> y=<ytran> z=<ztran>

rotate-object <object> x--<xrot> y=<yrot> z=<zrot>

These commands have a slightly different argument structure which serves the purpose of

using defaults. If any coordinate direction is missing from the arguments, it is assumed to

be 0. The order of the arguments is up to the user. Transformations are performed in the

order of the arguments in the argument list.

4.1.5 Composite objects

The composite object commands are:

make-composite-object <name> <objectl> <object2> ...

link-objects <name> <objectl> <object2> ...

These commands create a new composite object by joining the objects in the argument list

permanently. They do not perform any transformations on the argument objects, but

simply use their current positions. The first command will create a new object and leave

the components in the workspace, while the second one will remove all components from

the workspace atter creating the composite object. Composite objects can be used

(transformed, operated on by agents, etc.) in a manner identical to the elementary objects.

4.1.6 Objects created with ROBOSIM modeling language

The following command can be used to create a composite object using its

ROBOSIM source code written in the modeling language described in section 3.0:

make-robosim-object <name> <filename> <objectname> [<color>]

The specified modeling language file is scanned until a 'store-file' command is encountered

with the specified object name as its argument. An optional color parameter is also

accepted.

4.1.7 Agents

The following command creates an agent:

-13-

Final Report: Development of ROBOSIM for Academlc/lndtultrlal Use VanderbUt University

make-agent <name> <agent-type> [<color>]

Agents are basically robots whose models have been pre-compiled using the ROBOSIM

modeling language described in section 3.0.

4.1.8 Agent positioning

The following commands may be used to move (position) the agent in the
simulation environment.

drive <agent> <joint angles> I <joint angle vector name>

move-straight <agent> <coordinates>

move-inter <agent> <coordinates>

find-path <agent> <coordinates>

move-straight-to <agent> <object> <coordinates>

move-inter-to <agent> <object> <coordinates>

find-path-to <agent> <object> <coordinates>

The coordinate specifications are agent specific, for the PUMA they must contain six

values of either joint angles (only for the drive command) or rectangular coordinates (x, y,

z, roll, pitch, yaw) either workspace absolute or object relative. The movement can be

straight-line or joint-interpolated, or the agent can be instructed to find a path to the

desired location based on its knowledge of the workspace configuration and built-in

collision-free path-planning heuristics. The drive command also accepts a previously

recorded joint angle vector (see later).

Two additional agent positioning commands that are useful when small incremental
motions of the robot arm are needed are:

translate-agent <agent> x=<xtran> y--<ytran> z--<ztran>

rotate-agent <agent> x=<xrot> y=<yrot> z=<zrot>

These commands always perform straight-line motion. The coordinate specification uses

the same scheme as the object transformation commands, that is the coordinates are

named, and any unspecified coordinate direction is assumed to be 0.

The robot movement simulation step size for the movement commands is set with
the command:

minimal-step <value>

The inverse kinematics solution used for the agent is set by the command:

set-solution <agent> <value>

- 14 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt Unlver_ity

The inverse kinematics method for the PUMA 560 arm provides 8 different solutions for

(almost) any location. Some of these solutions are typically invalid due to joint angle

constraints. The accepted range for 'value' is 0...7. The command also accepts the special

value of-1 which instructs the agent to select the most suitable solution automatically.

This is the default operation of the agent. Setting a fixed configuration index will more

likely result in joint limit violation error messages, since the agent has no chance for

switching solutions. For small movements the automatic selection is based upon choosing

a valid configuration which is closest to the current joint variable values. This strategy

works best when the agent is performing various tasks in a relatively small part of the

workspace. However for a major position shift this may not be the best approach. In such

cases the agent will select the new configuration which offers the most room (i.e., all joint

angles are as far from their respective limits as possible) for moving around in the vicinity
of the new location. To determine which strategy to use the agent compares the joint

angles of the old and new positions. If the difference is larger than a preset threshold, the

second method is used, otherwise the first. This threshold value can be set with the

following command (default value is 45 degrees):

set-large-move-limit <limit>

In most cases this strategy works fine. However, it is possible that in some cases explicit

control of the robot arm configuration is necessary. (It is most likely to occur if relatively

large straight-line motion segments are needed. In straight-line motion mode the simulator

considers a configuration change an error, since it would result in an abrupt reorganization

of the links during the motion segment.) For such situations the simulator offers the

following configuration management commands:

get-solution <agent>

prints out the currently used configuration index. This will give a value between 0 and 7 if

the automatic selection method is being used.

The following command:

get-valid-solutions <agent>

prints the indices of all valid configurations for the current positions.

The following command:

freeze-solution <agent>

is equivalent to using 'set-solution' with the value obtained by using 'get-solution'.

The simulator also performs collision testing while moving the robots in the

workspace. The collision testing can be enabled/disabled with the following command:

-15-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

set-collision-check <flag>

If the flag is non-zero, collision checking is turned on, otherwise it is turned off. Initially

the collision checking is enabled.

4.1.9 Position reporting

Position reporting is handled with the following commands:

get-position <agent>

get-angles <agent>

record-angles <agent> <joint vector name>

These commands write a line of the following format to the report stream:

position of agent <agent> in line [labehNNNINNN] m <pos>

These commands behave differently based on the operating mode of the simulator.

If the simulator is in simulation only mode, then the manipulator model's joint angles or

coordinates are reported. If the simulator is connected with a real robot manipulator then

the robot hardware is queried for the actual joint angles, the simulator's model is updated

with the reported angles, and these angles are printed out. This way the usage of these

commands will synchronize the simulator's model with the actual manipulator. For the line

numbering convention in the report stream see the explanation in section 4.1.2 on error

reporting. The 'get-position' command prints the position in world (rectangular)

coordinates, while the 'get-angles' command's output is in joint angles (degrees). The

'record-angles' command is similar to the 'get-angles' command, but it also records the

angles in a coordinate vector which will be associated with the symbol specified in the
command line. Coordinate vectors can be used as parameters for drive commands, and

they are generally useful for recording important locations in the robot's workspace. The
coordinate vector data base can be saved and restored with the following two commands:

save-positions <filename>

load-positions <filename>

As an additional safety measure against inadvertently losing important data, the simulator

automatically saves the current coordinate vector set into the last used file if either a save

or a load command was executed previously.

4.1.10 Grasping

The simulator's grasping operations are based on grasping attributes associated

with each object in the workspace. These are the grasping coordinates (in an object

relative coordinate frame) and the grasping opening used to establish contact with the

- 16-

Ftnal Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

object. The grasping attributes are best specified immediately after object creation, when

its location is still known, and then the grasping coordinates will be transformed any time

the object is moved.

The following command establishes the grasping point and hand orientation in an

object-relative coordinate frame:

define-grasping-point <object> <x> <y> <z> <roll> <pitch> <yaw>

The following command establishes the hand opening which is used to grasp the

object. The hand is CLOSED to the distance specified upon grasping:

define-grasping-opening <object> <distance>

The following command is the EXTRA hand opening above the value specified

above when the hand is moving in to grasp the object. This is a global value, but may be

overwritten for an individual object by using:

define-approach-opening <object> <distance>

The default approach opening (= grasping opening + default gap) can be overwritten for

individual objects using the above call.

The following command moves the hand to the grasping point of the object and

opens it to the approach opening (defined using either the default gap or the individual

approach opening commands). It will give an error message if the hand already holds an

object. This command uses the 'find-path' command's method to get to the desired point.

move-to-grasp <agent> <object>

The following command grasps the selected object:

grasp <agent> <object>

If the hand is not empty, an error message is generated. Otherwise the hand closes to the

grasping opening associated with the object, and in the simulation's data base a temporary

link is set up between the object and the last link of the robot manipulator.

The following command releases the selected object:

release <agent> <object>

This is the opposite of grasp. It gives an error message if the hand is not holding the

specified object. NOTE: the simulator does not model effects like gravity, etc. If an

- 17-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

object is released in the "air" it will stay there in the simulated environment, but of course

it will drop in the real world, leading to inconsistencies between the world and its model.

4.1.11 General graphics setup

The following commands establish parameters for the viewing transformations:

look-from <x> <y> <z>

look-at <x> <y> <7t>

twist-camera <angle> <incremental>

The twist-camera command is used only in the SGI implementation, where it rotates the

camera around its axis. If the second parameter is given (its value is not important, it just

serves as a place holder) then the twisting is done incrementally to the current camera

angle, otherwise the angle parameter is interpreted as an absolute angle. In the HP-UX
version this command has no effect, as is also true for the PC version.

The following command associates a color specification with the 'name' given to

the color:

define-color <name> <r> <g>

Red, green, and blue intensities range from 0.0 to 1.0.

The following command specifies the light source:

light-source <x> <y> <z> <color> <ambient>

This command is not needed for wire frame display, only for the other types. The ambient

parameter just serves as a place holder, its value is not important. If it is present then the

light source is ambient, otherwise it is directional.

The following command defines the graphics display option to be used:

display-type wireframelhiddenlsolidlshade

Not all implementations support all display modes, if an unsupported mode is selected, the

command is silently ignored.

4.1.12 Physical manipulator control

The following command enables sending commands to the real robots in the

system:

enable-execute <agentl> <agent2>

- 18-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

disable-execution

The execution will be enabled for those manipulators only which are listed in this

command. Their order must match the order in which the low-level interface function

expects the coordinate vectors. The second command is the opposite of the first - only

simulated execution atterwards. The system starts up in this state.

4.1.13 General

The following additional simulator commands are used for loading files, setting

flags, and exiting the program:

load <filename_ Takes commands from the specified file. Returns when end of file

or the 'exit' (or 'end') command is encountered. Loads may be

nested.

set-echo <flag> If 'flag' is non-zero then all subsequent loads will echo the contents

of the command file as it is being processed.

exit or end If given at the simulator prompt, exits the simulator program

returning to the DOS prompt. If given in a command file, returns

to the simulator prompt.

abort If given at the simulator prompt, exits the simulator program

returning to the DOS prompt in the same manner as the 'exit' or

'end' command. If given in a command file, exits the simulator

program returning to the DOS prompt.

4.2 Simulation Example

Figure 3 shows a simulated arc-welding workcell for loading, positioning, and

welding a four-part assembly. Listing 3 shows the command sequence used to set up the

workcell &Figure 3. Figure 3 is a screen dump with the same resolution as viewed on the

monitor. Figure 4 shows the same workcell printed with high resolution on an HP

Laserjet printer.

Referring to Figure 3, the workcell consists of two robots, a positioner (turntable),

two work tables, a welding torch and torch holder, and four parts to be welded into an

assembly. The robot on the left-hand side sequentially loads the parts onto the positioner

which positions the parts (in some cases, rotates the part) for welding by the robot on the

right-hand side of the cell. A portion of the weld command sequence used for loading the

first two parts of the assembly and performing the first quadrant weld is shown in Listing

4. Figure 5 shows the first two parts ofthe assembly being welded. Figure 6 is a closeup

view of the first weld. The completed assembly is shown in Figure 7. On the computer

screen the entire welding operation is performed with high speed animation in color.

- 19-

Final Report: Development of ROBOSIM for Academic/Induatrlal Use Vanderbllt Uldversity

ROBOSIM

Figure 3. Simulated arc-welding workcell.

- 20 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

J

Figure 4. Laser printout of welding workcell.

-21 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

define-color

define-color

define-color

define-color

define-color

define-color

; SETUP.CMD

define-color red 1.00 0.00 0.00 ;

green 0.00 1.00 0.00
blue 0.00 0.00 1.00

purple 1.00 0.00 1.00

cyan 0.00 1.00 1.00

yellow 1.00 1.00 0.00
white 1.00 1.00 1.00

define-color It-grey 0.75 0.75 0.75

look-at 0 0 500 ;

look-from -2000 4000 1500

set-collision-check 0 ;

minimal-step 4 ;

COLOR DEFINITIONS

VIEW COMMANDS

SET COLLISION OFF

SET INITIAL SPEED

FLOOR

POSITIONER

ROBOT - R1

ROBOT - R2

TORCH HOLDER

BOX1 OF ASSEMBLY

BOX2 OF ASSEMBLY

make-object floor box 4000 6000 10 It-grey ;

translate-object floor x=350 y=-1500 z=-10

make-agent p position cyan ;

make-agent rl puma560 purple ;

rotate-object rl z=90

translate-object rl x=-500 y=-650

make-agent r2 puma560 green ;

rotate-object r2 z=90

translate-object r2 x=1000

make-robosim-object tablel table7.dat tablel white ;TABLE1

translate-object table 1 x=1000 y=500

make-robosim-object table2 table7.dat tablel blue ; TABLE2

rotate-object table2 z=90

translate-object table2 x=-1100 y---650 ;

make-object holder box 200 200 300

make-object boxl box 400 400 50 green ;

translate-object boxl x=600 y=500 z=375

define-grasping-point boxl 0 0 25 180 0 0

make-object box2 box 282 282 50 yellow ;

translate-object box2 x=1400 y=500 z=375

define-grasping-point box2 0 0 25 180 0 0

make-object pipe cylinder 100 100 cyan ;

translate-object pipe x=1000 y=650 z--400

define-grasping-point pipe 0 0 50 180 0 0

make-robosim-object top top.dat top white ;

translate-object top x=1000 y=350 z=375

define-grasping-point top 0 0 26 180 0 0

make-robosim-object torch torch.dat torch red ;

define-grasping-point torch 0 0 -50 0 0 -180

rotate-object torch y=-90

CYLINDRICAL PART

TOP OF ASSEMBLY

WELDING TORCH

- 22 -

Final Report: Development of ROBOSIM for Academlc/lndmtrial Use VanderbHt University

translate-object torch x=-1000 y=-650 z=650
end

Listing 3. Setup Commands for Arc-Welding Workcell Shown in Figure 3

• tttt_ttttt_ttttt_t_t_tt_tt_tttt_t_t

;GET WELDING TORCH AND POSITION POSITIONER
• ____t_qt__t_t_t

move-to-grasp rl torch, drive p -90 0 0 0 0 0

grasp rl torch
drive rl 0 0 0 0 0 0
• _______

;LOAD BOX1 OF BOTTOM PART OF ASSEMBLY

move-to-grasp r2 boxl

grasp r2 box l
drive r2 0 0 0 0 0 0

move-inter r2 330 0 350 -180 90 0

release r2 boxl

drive r2 0 0 0 0 0 0
• _t_____t_

;LOAD BOX2 OF BOTTOM PART OF ASSEMBLY
._______

move-to-grasp r2 box2

grasp r2 box2

drive r2 0 0 0 0 0 0

move-inter r2 380 0 350 -90 45 90

release r2 box2

drive r2 0 0 0 0 0 0
• _______

;LINK BOX1 AND BOX2 INTO "BOTTOM" PART
• l_t_t_t___t_qt_

1

link-objects bottom boxl box2
• ______t_

;POSITION BOTTOM PARTS FOR WELDING
• _t______

grasp p bottom

drive p 45 0 0 0 0 0

drive rl -34.5 -30 125 0 62 0
• _______
)

;WELD FIRST QUADRANT
• _______

look-at -153 0 819

look-from -153 1000 819

minimal-step 1

- 23 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

move-straight rl -154.26 -151.89 812.07 -180 -21 41

look-at 0 0 500

look-from -2000 4000 1500

minimal-step 10

drive rl 0 0 0 0 0 0

Listing 4.

F'
Weld Command Sequence for First Quadrant Weld on Bottom Assembly

Figure 5. Welding first two parts of assembly.

- 24 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

ROBOSIM

K'OBkRG >

Figure 6. Closeup of welding operation.

ROBOSIM

,/,7=

\

• J.

Figure 7. Completed weld.

- 25 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

5.0 ADVANCED FEATURES

Although the basic modeling and simulation environment described above perform

quite satisfactorily as a robot modeling tool, ROBOSIM's capabilities were greatly

enhanced with the completion of various extensions to the basic package. Some of these

extensions use heuristic, rule-based programming techniques. The extensions include:

Composite objects: The ROBOSIM simulation environment also supports the

linking of separate objects into a so-called composite object which can be

operated on as a unit while preserving the separate accessibility of its

components. A good example of this is a drawer with various objects in the

drawer. During the course of the simulation a manipulator may have to pull

out the drawer (the drawer and its contents have to be treated as a unit) and

then pick up a single object from the drawer (now a part of the composite

object has to be accessed individually).

Configuration management: When a manipulator arm is programmed using

world coordinates it is typical to have several valid solutions (sets of joint

coordinates) by which the manipulator can reach the desired position. For

example, in the case of manipulators similar to the Unimation PUMA 560

robot this manifests in let_ or right handed and elbow up or elbow down

configurations for the arm. ROBOSIM permits the user to choose any

configuration and stay with it for the duration of the simulation. However, this

approach is not optimal when the manipulator has to move distances

comparable to the limits of its envelope. For such cases the simulator provides

an automatic configuration selection mechanism which is based on the

following heuristics:

V For small displacements stay with the current configuration: The

rationale behind this rule is that small displacements typically mean

local manipulation on some object.

V' The configuration must not change during straight-line motion

segments.

v' For large displacements use the configuration which gives the most

freedom at the target position: The configuration giving the most

freedom is defined as the solution which has all of its joint coordinates

as far from the limits of the manipulator as possible. The rationale

behind this heuristic is that the manipulator is expected to perform local

manipulations on the objects near its new location for which it needs as

much freedom as possible.

- 26 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

The above heuristic rules have been observed to perform reasonably well in a

number of simulations. Only in a few cases was it necessary to manually

override the configuration selected by them.

Collision detection: ROBOSIM also provides a way to check for collisions

during a simulation run. The collision detection is based on the detection of

intersections of solid object (passive objects or manipulator links) bounding

polygons. For efficiency reasons the simulator maintains a rectangular

bounding box for every object and invokes the more complex polygon-based

collision detection method only if the bounding boxes intersect.

Collision avoidance: The simulator also provides a heuristic path planning

algorithm which is capable of recovering from collision situations. The

collision avoidance is based on heuristic rules describing actions to try in

various collision situations. Some of these rules are generic, others are

manipulator-specific. An example generic rule is the "minimal volume rule"

which is usable for large displacements of the end effector. It specifies a path

to reach the desired target which includes a midpoint where the arm is folded

in a way which minimizes its reach. Users can attach other heuristic rules

specific to their manipulator models. The heuristic collision avoidance

algorithm works as follows:

(1) Verify that the target position is collision free. If not, the arm cannot

reach the target.

(2) Attempt to reach the target position from the current position using the

specified path synthesis method. (Most of the time this is just a simple

joint-interpolated motion.)

(3) If a collision is detected between the starting and end points do the

following:

V' Determine the collision situation (objects involved, direction of

movement, etc.).

V' Match the capabilities of the available heuristic rules against the

collision situation.

v' Invoke all matching rules in sequence. The rule will determine

an intermediate point which, when used to divide the current

motion segment will hopefully avoid the collision situation.

v" Recursively repeat the planning process for both segments of

the now divided original motion segment.

- 27 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

Additional checks are built into the planning algorithm to make sure that it

does not get into an infinite recursion. Additionally, the algorithm stores

already tried motion segments to speed up the search.

Interface to control real robots: The simulation environment is also capable of

generating command sequences for real robot controllers. In this mode only

those motion commands are output which have been verified with the built-in

collision checking to be safe. Currently only the PUMA 560 robot with the

Unimation controller running the VAL II robot control system [5] is

supported, but additional output modules can be added.

A simple simulation for demonstrating the features of configuration management,

collision detection, and collision avoidance is shown in Figure 8. This is the same

simulation as presented previously in Figure 2. It is repeated here for convenience. The

SETUP.CMD file used to create the simulation was presented previously in Listing 2,

page 9. The simulation consists of a PUMA 560 robot (named 'r'), a floor, an object

(named 'xx'), and a ceiling structure (named 'top').

] ROBOSIM li::i|_i

x_,

nOUAG I_l
tOBARG>
tOBAB;>I

Figure 8. Simulation of object removal/insertion for demonstration of configuration

management, collision detection, and collision avoidance (object on left side).

The motion command file is given in Listing 5, and the referenced command files

MOVEFORW.CMD and MOVEBACK.CMD are given in Listings 6 and 7 respectively.

The objective of the motion demo is to remove the object xx from its initial location at x =

900, y = 300, and z = 800 and reinsert it at a new location x = 900, y = -300, and z = 800.

This is done first in the left handed, elbow down configuration of the robot (solution #0)

and then in the left handed, elbow up configuration (solution #3). The object xx is them

relocated to the fight side of the simulation (see Figure 9). and the removal/insertion

- 28 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

operation is repeated with the robot in its right handed, elbow up configuration (solution

#4) and finally in its right handed, elbow down configuration (solution #7).

MOTION.CMD

set-solution r 0;

load moveback.cmd;

load moveforw.cmd;

set-solution r 3;

load moveback.cmd

load moveforw.cmd

rotate-object xx z=180;

translate-object xx x=200

set-solution r 4;

load moveforw.cmd

load moveback.cmd

set-solution r 7;
load moveforw.cmd

load moveback.cmd

translate-object xx x=-200;

rotate-object xx z=180

end

LEFT HANDED, ELBOW DOWN CONFIGURATION

REMOVE OBJECT AND REINSERT AT Y = -300

REMOVE OBJECT AND REINSERT AT Y = 300

LEFT HANDED, ELBOW UP CONFIGURATION

MOVE OBJECT TO RIGHT SIDE OF SIMULATION

RIGHT HANDED, ELBOW UP CONFIGURATION

RIGHT HANDED, ELBOW DOWN CONFIGURATION

RETURN OBJECT TO LEFT SIDE OF SIMULATION

Listing 5. Motion commands for object removal/insertion demonstration, Figure 8.

MOVEFORW.CMD

move-to-grasp r xx

get-solution r

grasp r xx

translate-agent r x=-200

translate-agent r y=600

translate-agent r x=200
release r xx

drive-find r 0 0 0 0 0 0

end

Listing 6. Move forward command sequence, Figure 8.

MOVEBACK.CMD
.********************

move-to-grasp r xx

- 29 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

get-solution r

graspr xx

translate-agent r x=-200

translate-agent r y=-600

translate-agent r x=200
release r xx

drive-find r 0 0 0 0 0 0

end

Listing 7. Move back motion command sequence, Figure 8.

ROBOSIM

o

nOeAG _m
F_BARG>
_OBARG>

Figure 9. Simulation of object removal/insertion for demonstration of configuration

management, collision detection, and collision avoidance (object on right side

and ceiling lowered by 250 units to cause collision with robot when fully

extended).

Referring to the motion commands sequence (Listing 5), the robot configuration is

first set to the left handed, elbow down solution (#0). The MOVEBACK.CMD sequence

is then loaded followed by the MOVEFORW.CMD commands. Referring to Listing 6,

the move-to-grasp command is used to position the robot arm for grasping the object. As

explained previously, the move-to-grasp command uses thefind-path command's method

to get to the desired point. Thus the collision avoidance heuristics are called upon to

determine a collision free path if a collision is detected. With the ceiling at its normal

height, as shown in Figure 8, no collisions will be encountered in any of the four arm

configurations tested. Once the robot arm is in position to grasp the object, it is grasped

and the translate command is used to move the object in straight lines for the removal and

insertion operations. The object is first translated along a straight line in the x-direction by

- 30 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

-200 units. It is then translated along a straight line in the y-direction by 600 units, and

then reinserted by translating along the x-direction by 200 units. This operation might

correspond to the removal of a spare module from a rack and insertion of the module into

a system being repaired. The robot arm is shown at the instant of grasping the object for

removal in Figure 10 and at the final insertion position in Figure 11. Both figures are for

the elbow down configuration.

ROBOSIM

//:,,::...:.:.::.:.....:...._.::::.,.::.::.:::.,,.__,

:.. I

Figure 10. Robot in position to grasp object for removal, solution index 0.

ROBOSIM li_]::_

,OUAG 5[

Figure 11. Robot at module insertion position, solution index 0.

-31 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

Figures 12 and 13 show the module removal and insertion operations in the elbow

up configuration. The solution index is #3.

I) _a'_Z'_ "_,',
/y '\\.

././ x',.
... ,I,',1

izIOBAG I_

ROBM%G >

Figure 12. Robot in position to grasp object for removal, solution index 3.

noeosIu f_.'_._'_::

::

// ",X
Z/ \\
r / ... -N-:
_; ... ;¢

HOBAG []

Figure 13. Robot at module insertion position, solution index 3.

Referring to Listing 5, the object is next moved to the fight side of the simulation

and the module removal/insertion operations are repeated first in the right hand, elbow up

- 32 -

Final Report: Development of ROBOSIM for Acadendc/lndmtrlal Use Vanderbilt University

configuration (solution index #4) and then in the right hand, elbow down configuration

(solution index #7). Figures 14 and 15 show the module removal/insertion operations in

the elbow up configuration, and Figures 16 and 17 show the operations in the elbow down

configuration.

ROBOSIM

r-'q

[
,:2' %:

,,./ x.X

C..."}

NOBA_

ROBtRG _I

Figure 14. Robot in position to grasp object for removal, solution index 4.

ROBOSIM _!-_

J/"

2...;_.
"Z. , ,,,'l

[IOBAG

RO_

Figure 15. Robot at module insertion position, solution index 4.

-33 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

ROSOSIM

D

HOHAG []

Figure 16. Robot in position to grasp object for removal, solution index 7.

/..:::::::::::::::::::::::::::::::::::::::

//. ,,\.
,. / "\x
_ .._'

ROflAG

Figure 17. Robot at module insertion position, solution index 7.

As previously observed, the move-to-grasp command is used to position the robot

arm for grasping the object, and the move-to-grasp command uses thefind-path command

to get to the desired point. Thefind-path heuristics first attempts to reach the target using

joint-interpolated motion. For the elbow down configurations of Figures 16 and 17, this

calls for moving from joint angles of 0 (home position shown in Figure 9) to joint angles

on the order of-200 for joint 2 and 200 for joint 3. This results in the arm being nearly

fully extended as it swings through the vertical position, as shown in Figure 18, on its way

to the position shown in Figure 16. As can be seen in Figure 18, this does not result in a

-34 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

collision with the top so long as it is at its normal position. However, if the ceiling is

lowered by 250 units, a collision does occur, as shown in Figure 19, when the arm

attempts to move from its home position to the grasp position for the solution index #7

configuration.

ROBOSIM

r
/.z:-Nx..

HUUAt; I_i

_,B&RG>

Figure 18. Robot arm fully extended as it swings from home position to grasping position.

l ROBOSIM I|i_i

::

L;lOBJiRG>tramJlate-obj_¢ top x*-2S0
ROBbinG>

Figure 19. Collision occurs when ceiling is lowered, calling for new strategy from path

planning heuristics.

The first approach tried by the path planning heuristics is to "fold up" the third joint

as the second joint swings through its motion. In this case, this works as shown in Figure

-35 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt Unlverlity

20, so the heuristic continues on to the position of Figure 21 where simple joint-

interpolated motion is tried again to reach the target position.

._ ROBOSIM

%,

_.:... _

aOnAG I_!

_OBiR(;)d;'ive t 0 -gD -45 0 0 0
I_OBJd_G >

Figure 20. Path planning heuristics successfully avoids collision by "folding" third joint as

second joint swings through its motion.

1 ROnO=M L

HOIIAll

OB,tl >

Figure 21. Having successfully avoided collision with lowered ceiling, path planning

heuristics continue with attempt to reach target from intermediate position

with simple joint-interpolated motion.

In attempting to move from the intermediate position shown in Figure 21 to the

target position invoking joint-interpolated motion, a second collision occurs between the

arm and the object as shown in Figure 22. The path planning heuristics successfully avoid

- 36 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

this collision by swinging the first joint temporarily beyond its target value (Figure 23)

before approaching the final grasping position shown in Figure 24. In this case, two

collisions were detected and avoided by the first approach attempted by the path planning

heuristics in each case. For more difficult situations, the collision avoidance heuristics

may try a number of approaches before finding one that works.

_] ROBOSIM

o

•::::::::::::::::::: :::::::::::::::::::

_ X
Z]

BOB_G _)
_OBARG>

OBARG

Figure 22. Second collision occurs when arm moves from intermediate position needed

to avoid first collision by simple joint-interpolated motion.

ROBOSIM

_ r-q

..)'L-'L"L'-".':::::L ".":::L".'.'.'.'.'::::.'x.

nOBAG _)
_OB_G>

I_OB&RG>

Figure 23. Path planning heuristics avoid second collision by temporarily swinging first

joint beyond its target value.

- 37 -

Final Report: Development of ROBOSIM for Acadendc/lndustrlal Use VanderbHt University

RO(BOSIM

o

/>" \x
// '\..

_;_i:..........................::::::::::::::::::::::::::::::

RO[_AG

ROBARG>

Figure 24. Final target position reached by avoiding two collisions.

- 38-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt Unlveraity

6.0 APPLICATIONS

The ROBOSIM modeling and simulation package has been used both in teaching

and research. It has been used in the teaching of courses on robotics, mechanisms,

industrial control, and advanced automation at both the undergraduate and graduate levels

[6,7]. ROBOSIM provides the students with a graphical means of visualizing objects and

their relationships in 3-dimensional space. With the simulation system, students may

actually graphically construct every manipulator they study in the classroom or in class

assignments, and then they may operate the manipulator and use it to grasp, move, and

release objects, and develop and test action plans for using the manipulators in practical

settings. The cost of doing this with physical hardware would of course be quite

prohibitive in terms of both monetary costs and time. Figure 25 shows students studying a

robot servicing scenario on a space station concept. Figure 26 shows two PUMA 560

robots in a dual-robot, coordinated motion welding application. One robot holds the part

while the other robot manipulates the welding torch. The motion is coordinated to

maintain the joint in an instantaneous horizontal position at the time of welding with the

torch vertical and welding speed constant. Figure 27 shows simulation models of

Cincinnati Milacron T3 robots on a Hewlett Packard workstation.

ROBOSIM has also been used in a number of research projects sponsored by the

Strategic Defense Initiative and by the National Aeronautics and Space Administration

dealing with various uses of robots in space-related applications [8-11]. It has also been

used in a research project sponsored by Boeing Aerospace, Huntsville, AL, which had the

goal of building and integrated automatic diagnostics and robotics repair system prototype

for Space Station Freedom [10]. Figure 28 demonstrates optimum downhand welding on

the space shuttle main engine nozzle. Figure 29 shows a simulated saddle weld on the

planned space station berthing port.

-39 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderblit University

Figure 25. [Top] Students manipulating a robot servicing scenario on a space station

concept. [Bottom] Space station concept with servicing robot (in red).

- 40 -

ORIGINAL PAGE

COLOR PHOTOGRAPH

Final Report: Development of ROBOSIM for Academic/Indmtrial Use Vanderbiit University

Figure 26. PUMA 560 robots in a dual-robot, coordinated motion welding application.

[Top] Physical robots. [Bottom] Simulation.

ORIS!NAL F'..'_QE
COLOR PHOTOGRAPH

-41 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderb/it University

Figure 27. [Top] Cincinnati Milacron T3 robots. [Bottom] Construction of components.

- 42 -

Final Report: Development of ROBOSIM for Academic/Induatrlal Use Vanderbllt University

Figure 28. Optimum downhand welding on the space shuttle main engine nozzle with

coordinated motion of positioner and manipulator.

- 43 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

Figure 29. Simulated saddle weld on space station berthing port concept. [Top] Shaded

modelling. [Bottom] Wireframe modelling.

- 44 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

7.0 CONCLUSIONS, FUTURE ENHANCEMENTS

The available experience with the ROBOSIM package suggests that it is a flexible

and powerful tool for modeling and simulating robotic systems. It has proven easy

enough to understand and use in introductory courses on robotics, kinematics, industrial

automation, and mechanisms, but its advanced features also make it possible to use in

complex large-scale systems.

Some areas where future improvements are planned include:

Programming language: A future version of ROBOSIM will be embedded into

a general purpose interactive programming language interpreter. This new

version will also support the old command syntax for backward compatibility,

but the use of a general purpose language instead of the current command

interpreter will offer several advantages:

v" Program flow control statements in simulations.

V' An easier way for users to specify inverse kinematic routines for their

manipulator models.

"¢' An easier way for users to specify arm configuration selection and

collision avoidance heuristics for their models.

Development of a graphical user interface (GUI) to control simulation options:

There are some system parameters in the simulation environment which are

especially suited for control by GUI methods (while keeping the current

interactive commands to control them as well). These include the camera

setup, lighting model, and other similar options.

• Interface to common CAD packages for importing shape designs to be used in
simulations.

• Continued improvements on the path planning and arm configuration

management heuristics.

- 45 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderblit University

8.0 REFERENCES

[1] Fernandez, K. R., Robotic Simulation and a Method for Jacobian Control of a

Redundant Mechanism with Imbedded Constraints, Ph.D. Dissertation, Vanderbilt

University, 1988.

[2] Springfield, J. F., ROBOSIM Workstation Extensions, Master's Thesis, Vanderbilt

University, Spring 1989.

[3] Wilson, S. L., Interfacing of a Robot Simulation Program with Graphic Utilities

of an lntergraph lnterpro 360 System, Master's Thesis, Vanderbilt University,

August 1990.

[4] Mirolo, C. and Pagello, E., "A Solid Modeling System for Robot Action

Planning", IEEE Computer Graphics and Applications, January 1989, pp 55-69.

[5] Unimation, Inc., User's Guide to VAL II, Danbury, CT, 1986.

[6] Springfield, J. F., Cook, G. E., Andersen, K., and Fernandez, K. R., "ROBOSIM:

A Simulation Package for Robots", University Programs in Computer-Aided

Engineering, Design, and Manufacturing, Eds: K. P. Chong, B. R. Dewey, and K.

M. Pell, American Society of Civil Engineers, 1989, pp 239-246.

[7] Biegl, C., Cook, G. E., Fernandez, K. R., and Smith, M. K., "ROBOSIM: An

Intelligent Robotics Simulator", University Programs in Computer-Aided

Engineering, Design, and Manufacturing, Ed: D. Stone, Tennessee Technological

University, 1992, pp 209-216.

[8] Biegl, C., et. al, "Adaptive Control of a Dual-Arm Robot Manipulator Using On-

Line Graphical Simulation", Proceedings of ROBEXS '89, The Fourth Annual

Workshop on Robotics and Expert Systems, Palo Alto, CA, pp 253-263, 1989.

[9] Fernandez, K. R., "The Use of Computer Graphic Simulation in the Development

of Robotic Systems", Acta Astronautica, Vol. 17, No. 1, Pergamon Press, January

1988, pp 115-122.

[lO] Biegl, C., et. al, "Simulation-Based Intelligent Robotics Agent for Space Station

Freedom", Proc. of the 5th Conference on Artificial Intelligence for Space

Applications, Huntsville, AL, pp 203-210, 1990.

[11] Parlaktuna, O., Cook, G. E., Strauss, A. M., and Fernandez, K., "Jacobian control

for space manipulator", Robotics and Autonomous Systems, No. 11, Elsevier, pp

35-44, 1993.

- 46 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

[12] Parlaktuna, O., Cook, G. E., Strauss, A. M., and Fernandez, K. R., "Fine Attitude

Control of Space Vehicles using Space Manipulators", International Journal of

Robotics & Automation, Vol. 9, No. 1, IASTED, pp 29-35, 1994.

- 47 -

Final Report: Development of ROBOSIM for Academk/Industrlal Use VandcrbUt University

APPENDIX A: COLLISION DETECTION

In this appendix the collision detection algorithm as implemented in ROBOSIM is

presented. The material presented does not include a detailed discussion of the theory

behind the methods used, nor does it give an overview of collision detection. The

collision detection algorithm implemented is very similar to the POCODA (POlygonal

COllision Detection Algorithm) [1]. The implementation used in ROBOSIM is given with

special emphasis on those extensions to POCODA.

Collision detection is very important in simulation of robots. One usually wants to

know if the robot has collided with its environment or with itself. Also, as discussed

elsewhere in this report, with collision detection powerful heuristics may be implemented

for automatic collision free path generation.

The algorithm used in ROBOSIM can be broken down into several subalgorithms.

These will be discussed from the lowest level to the highest level. The assumption used

here is that all objects are defined by convex planar polygons. The problems involved in

collision detection are as follows:

1. Given a polygon and a point in the plane of the polygon determine whether that

point is inside of the polygon.

2. Given a polygon and a line segment determine whether the line segment

crosses the plane of the polygon.

3. Given two polygons determine whether they intersect.

4. Given two objects determine whether they intersect.

5. Given two bounding volumes around two objects determine whether they

overlap.

Much of the discussion that follows, as well as the actual implementation, is based

on describing planes by the plane normal form of the plane equation given by

where N is the normal to the plane, P is a point, and n_ is the distance from the plane to

the origin.

- 48 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

The plane described by this equation is the set of points P such that _(/3) is

zero. Given N', n s, and a point P, the residue ,I,g(P) is zero if P is in the plane, positive

if/3 is above the plane, and negative if t3 is below the plane.

The point-in-polygon problem is the most time-consuming operation. The method

used to solve this problem is why the polygons must be convex. The algorithm is to

follow the polygon's edges around the polygon checking to see which side of each edge

the point is on. If the point is to the same side of each edge then that point is inside of the

polygon. This is checked by plugging the point into each edge's penalty function. The

penalty function is a plane equation such that the edge lies in the plane and the plane is

perpendicular to the plane of the polygon. The penalty function is calculated once for

each edge and stored in the internal structure. Given the normal to the polygon (_T), the

directed edge (E) from the first edge point (_) to the second edge point (4), and a point

/3 to be tested, the penalty function for an edge is given by

.(p) =&. p + m,

m,i =-M "111

ATt is the normal vector to the penalty plane; it is the cross product of the normal

to the polygon plane and the directed edge normalized with respect to the directed edge.

m s is the distance of the penalty plane form the origin. This penalty function can now be

used to determine which side of an edge a point is on.

The algorithm for determining if a line segment crosses the plane of a polygon

should be obvious from the above discussion. The two endpoints of the line segment are

both substituted into the equation of the plane in which the polygon lies. If the residues of

the two points are the same sign then both points lie on one side of the plane. Therefore,

the line segment did not cross the plane. If, however, the residues have different signs,

then the point at which the line segment crosses the plane must be determined so as to use

it in the point-in-polygon algorithm. Given two points _ and _ which are the endpoints

of a line segment and _(_) and _(_) which are the residues of _ and/32 in the polygon

plane, then the point along the line segment that intersects the polygon plane is Pc where,

- 49 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt Univer_ity

Each object in a simulation is composed of polygons, but due to speed and

efficiency requirements the above tests would be prohibitively slow. Therefore, some

simpler tests are required which can quickly eliminate some objects from the more

exhaustive tests. The method used is to perform test on bounding boxes of the objects. A

bounding box is described by a point and a vector. The point is the center of the box, and

the vector is the half-diagonal vector of the box (i.e., it points from the center of the box

to a come0. These values are determined by first determining the maximum and minimum

values along each axis. The half-diagonal vector is calculated by taking half of the

difference between the maximum and minimum along each axis. For instance, along the X

axis

C,= X_+ X_i"
2

D. = X_ - Xmi n
2

Now, two bounding boxes overlap if the distances between the centers along every

axis is less than the sum of the half-diagonal components along the corresponding axes.

However, the two bounding boxes must be defined in the same coordinate frame.

Typically, each object is defined in its own coordinate frame and has a transformation

matrix describing the position and orientation of the object in the world coordinate frame.

Therefore, a method is needed to transform a bounding box from one frame to the other.

Given two bounding boxes, B l ={Ci,/3t} and B 2 "-{C,2,&} , and two transformations T_

and T2 which are 4x4 matrices describing the position and orientation of boxes B_ and B2,

respectively, let C_.: and/3_.: be the center and half-diagonal vector of B I in coordinate

frame 2.

where • is the dilation product, an operation between two matrices which can be

expressed as the product of two matrices whose elements have all been changed to their
absolute values.

- 50 -

Final Report: Development of ROBOSIM for Academic_ndustrlal Use VMderbilt University

k=l

In order to test for bounding box overlap given two boxes, one first has to express B t in

coordinate frame 2 and check for an overlap. Then convert B_ to coordinate frame 1 and

cheek for an overlap. Only if both checks indicate an overlap is there one. If an overlap is
indicated then further checks have to be made to determine if there is a collision.

Once a possible collision is indicated by overlap of bounding boxes, more

exhaustive tests have to be performed. First, all points in one object must be transformed

to the other object's coordinate frame. Once this is done, a first approach would be to

check every edge in each object against every polygon in the other object. However, there

are some ways to reduce the number of edges which must be checked. First, each edge in

object 1 is checked against the bounding box of object 2. Only if the edge falls within the

bounding box could it intersect the object. Each edge that could intersect a polygon is

saved in the reduced edge array. Now, each edge in the reduced edge array is checked

against the polygons in object 2. However, each polygon from object 2 is first checked to

see if the plane it lies in could intersect the bounding box of object 1. If it does not, there

is no need to check edges against it. Finally, each possible edge is checked against each

possible polygon, using the methods outlined above, to determine if a collision exists. If

not, then all points of object 2 are transformed to the frame of object 1 and the procedure

repeated.

The use of this algorithm requires some special considerations when used with

robots. The technique used employs a bounding box around each object in the

environment, a bounding box around each link of each robot, and a bounding box around

each robot. The bounding boxes around each object and each link are relatively static, but

the bounding boxes around robots must be computed dynamically. This is because the

bounding boxes around robots change as the joint angles in the robots change. Whenever

a collision is checked for, bounding boxes are created around the robots. They are

calculated by using the bounding boxes of the links. The minimum and maximum extents

along the X, Y, and Z axes of the bounding boxes around the links are computed. Then a

bounding box around all of these bounding boxes is computed from the minimum and

maximum extents.

The purpose of bounding boxes around robots is that if there is more than one

robot, even bounding box checks become expensive. If there are two robots, each with

nine links (six movable and three fixed), 81 bounding box checks would be required every

time. And if there were three robots, 729 bounding box cheeks would be required. With

three robots, and therefore three bounding boxes, only three bounding box checks are

required. If there is a collision between bounding boxes, only the two robots need be
checked.

-51 -

Final Report: D_vdopment of ROBOSIM for Academic/Industrial Use Vanderbilt Univer_ity

Another problem that requires special treatment is a collision involving the robot

with itself. This is especially difficult when one considers that the design of the robot may

include overlap of adjacent links. If this is the case, then if links of the robot are checked

with other links of the same robot, then collisions might be seen that aren't really valid.

Therefore, collisions are not checked for against adjacent links. The simulator has internal

provisions for joint constraints. Therefore, any possible collision could be provided for by

limiting the joint angles. However, given legal joint values, it is possible for non-adjacent

links to collide. Therefore, collision detection of the robot with itself must be made.

Given a nine link robot, 28 bounding box checks must be made to ensure no collisions

with itself. However, this self-collision check may be controlled separately, since the user

may not require these tests.

The collision detection algorithm has only two weak points. It does not handle

concave polygons, and it will not signal a collision if one object is completely inside of

another. The stipulation concerning concave polygons is not serious as the modeler does

not generate concave polygons. The problem of not detecting a collision if one object is

completely inside another derives from the fact that the algorithm used is a polygonal

collision detection algorithm and not a solid model one. However, assuming two objects

start off outside of each other and movements are sufficiently small, then this should not

prove to be a problem. This condition also prevents the ability of one object to pass

through another (i.e., a movement is large enough that two objects do not overlap at any

point). The algorithm does not detect collisions in the volume swept by an object moving

between positions with another object, but rather only overlap of the objects at discrete

points along a trajectory.

References:

[1] Walter, S. E., Polygonal Collision Detection Algorithm, Ph.D. Dissertation, Cornell

University, 1985.

- 52 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

APPENDIX B:

ROBOSIM USERS' MANUAL

INTRODUCTION:

ROBOSIM is used for three-dimensional geometrical modeling of robot

manipulators and various objects in their workspace, and for the simulation of action

sequences performed by the manipulators. Models of robot manipulators, positioners, and

other mechanisms with moving joints, and objects that make up the complete simulated

environment are constructed in ROBOSIM's modeling environment. ROBOSIM also

provides a simulation environment where every command entered by the user is executed

and the results are displayed on a graphics screen. From this interactive environment users

can change the simulation scenario and operate the robot manipulator models previously

constructed in the modeling environment.

The ROBOSIM modeler and the ROBOSIM simulator each have a distinct

language that is described in this manual. Some of the interactive commands of the

simulation environment duplicate features of the modeler. For example, a box with

dimensions x = 10, y = 20, and z = 30 would be constructed in the modeler with the
command:

box x=10 y=20 z=30,

while from the simulation environment a box can be interactively constructed with the
command:

make-object boxl box 10 20 30,

where box 1 is the name given to the box created. As will be seen, there is a purpose for

both of these commands. In the modeling environment the box command might be joined

with other commands that generate geometric primitives to construct the links of a

manipulator arm. While in the simulation environment, the box command might be used

to interactively add a box to the simulated environment immediately upon execution of the

command. Then the box could be moved or grasped in the same manner as a box

constructed in the modeling environment. Robot manipulators or other mechanisms with

moving joints must be constructed with the ROBOSIM modeler. All objects (whether

constructed with the modeler or the simulator) and manipulators must be viewed with the
ROBOSIM simulator.

GETTING STARTED:

As stated above, the ROBOSIM simulator is an interactive program, the

commands entered by the user are immediately executed and their results are printed or

- 53 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

displayed on the screen. The simulator's code is contained in one executable file named

ROBO386.EXE. Typing 'robo386' at the shell prompt will invoke it. Upon startup the

simulator initializes the graphics display and loads in some initial commands from the file

named SETUP.CMD if this file exists in the current directory (otherwise the screen will be

blank with default viewing commands). After this the simulator's prompt appears on the

screen indicating that it is ready to accept commands from the user. The simulator's input

and output streams can be redirected to pipes, this way it is possible to issue commands by

other higher-level control programs. Currently implementations of the simulator are
available for the I-IP 9000/300 and 9000/800 graphics workstation families, Silicon

Graphics workstations, Intergraph workstations, and 386 or 486-based (386-s must have a

co-processor) PC compatibles with EGA or VGA displays.

THE ROBOSIM SIMULATION ENVIRONMENT:

The ROBOSIM package provides an interactive simulation environment where

every command entered by the user is immediately executed and the results are displayed

on a graphics screen. From this interactive environment users can change the simulation

scenario and operate the robot manipulator models in the system. The commands available

can be grouped as follows:

Environment configuration: Besides the modeling services discussed above

additional commands are available for the setting of global parameters like

camera position, display mode, light sources, etc. The graphics display module

of the simulator supports different display options like wireframe, hidden line,

solid filled and shaded graphics depending on the capabilities of the hardware

platform.

Manipulator control: There are commands available for moving the models of

manipulator arms in various modes: joint interpolated, straight line, rotation

about an arbitrary axis, etc. Manipulator coordinates can be specified both in

joint and world coordinates. The simulator has a built-in iterative inverse

kinematics algorithm, but the user can also specify an explicit inverse

kinematics method for his or her manipulator if such a method is available.

Additionally, the objects in the workspace can be grasped, moved and released

by the robots. If the scenario contains several manipulators these can be

operated in parallel.

Status reporting: Reports about different aspects of the simulator's operation

(arm position, collision situations, etc.) can be obtained by using one of the

appropriate commands from this group.

The command language of the ROBOSIM simulation environment has been

designed with two goals in mind: (1) to provide an interactive user interface, and (2) to be

usable as the interface to a higher-level task planner program. In the second application

- 54 -

Final Report: Development of ROBOSIM for Academlc/Indmtrlal Use Vanderbilt University

the task planner and the robot simulator are typically interfaced using some kind of pipe

mechanism and the task planner outputs similar command sequences as entered by users in

interactive applications. For this reason the command language has intentionally been kept

simple. A detailed description of each of the ROBOSIM simulation environment

commands is given below.

Command format:

The simulator uses a character stream command protocol. Commands can be

entered from the system console, loaded from a file, or sent by another program using the

pipe mechanism provided by the operating system. The general command format is:

[<label>:] <command> <argl> ... <argN> [; comment]

with the following rules:

(1) One command per line.

(2) command parameters are separated by at least one white space (SP, TAB)

character.

(3) There may be an optional semicolon at the end of the command, anything

between this character and the end of the line is considered as a comment.

Lines beginning with a semicolon are considered comment lines.

(4) There is a way to create multiple line commands, by inserting a backslash (_)

character immediately before the line terminator character.

(5) There is an optional label field in the command line. Labels are immediately

followed by a colon character.

(6) Movement commands can be issued only to the agents (robots) in the

workspace.

(7) Multiple agent movement commands per command line are possible. The

individual commands are separated by commas. Each of the commands be

directed to a different agent (manipulator) in the system, which will execute

the commands in parallel. The execution of the next command line begins,

when the last agent finished its operation. In contrast, if commands to two

different agents are placed into consecutive command lines, the execution of

these commands will be sequential.

Error reporting:

- 55 -

Final Report: Development of ROBOSIM for Acadendc/Indmtrtal Use Vanderbilt University

While processing a command stream, the simulator generates an error log stream.

For each command line which could not be completed successfully, there will be an entry

in this stream. The format of this entry is the following:

AJ, Error in line [label:NNNINNN] -- <code> <message>

If there was a label preceding the command containing the error, then the error

message will contain the name of the last seen label AND the number of lines read since

the last label was encountered. If the command stream did not contain labels, then the

error message will contain the number of the command line counted from the beginning of

the stream. (Line numbering is zero-based, that is the first line of a stream, or the line

containing a label has offset 0.) Currently the following error messages are defined:

Code: Error message text:

10

11

12

13

14

Undefined command: <command>

Unknown object: <command>

Too many arguments

Missing argument(s)

Illegal argument: <index of command argument>
Internal error

(This error message is given if the command interpreter itself did not find any error

in the command, but the execution of the command failed in ROBOSIM or in the

simulation environment.)

Object not an agent: <command>

Multiple commands for the same agent: <2nd. command>

Illegal coordinates: <command>

(This message will be given if the desired coordinates are out of the agent's

workspace, so no inverse kinematics solution exists.)

Joint violation: <agent> <joint index>

Collision: <type> <obj 1> <obj2> [<jnt 1> [<jnt2>]]

Where type is one of the following:

0 object to object

1 agent to object (1 joint field)

2 agent to agent (2 joint fields)

The optional joint fields are reported if agents are involved in the collision.
Internal movement error

(This message is reserved for unforeseen execution errors within the Simulation

Library.)

Hand is already holding object: <object>

Hand is not holding object: <object>

Note that in case the error message contains the original command line, only the

offending command will be included from multiple agent commands.

- 56 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt University

Object creation commands:

make-object <object name> <object type> <parameters>

This command creates an object in the workspace of the simulator. Various object

types have been defined, they and their parameters are described below.

box <xsize> <ysize> <zsize> [<color>]

cylinder <radius> <height> [<color>]

cone <radius> <height> [<color>]

truncated-cone <radiusl> <radius2> <height>]<color>]

sphere <radius> [<color>]

All solid objects are created with their center of mass at the origin of the

coordinate system and their principal axis para/lel with the Z axis. The color parameter is

used in a manner identical to its usage at the line objects.

Object transformation commands:

translate-object <object> x=<xtran> y--<ytran> z=<ztran>

rotate-object <object> x=<xrot> y=<yrot> z=<zrot>

These commands have a slightly different argument structure which serves the

purpose of using defaults. If any coordinate direction is missing from the arguments, it is

supposed to be 0. The order of the arguments is up to the user, e.g.:

translate-object boxl x=12 y=23 z=5

translate-object boxl y=23 z=5 x=12

are both accepted. Transformations are performed in the order of the arguments in the

argument list. (This may make a difference in the case of rotations.) The rotate command

expects its arguments in degrees.

Composite obiects:

make-composite-object <name> <objectl> <object2>

link-objects <name> <objectl> <object2>

These commands create a new composite object by joining the objects in the

argument list permanently. They do not perform any transformations on the argument

objects, but simply use their current positions. The first command will create a new object

- 57 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

and leave the components in the workspace, while the second one will remove all

components from the workspace after creating the composite object. Composite objects

can be used (transformed, operated on by agents, etc..) in a manner identical to the

elementary objects.

Objects created with ROBOSIM modelim, language:

make-robosim-object <name> <filename> <objectname> [<color>]

This command can be used to create a composite object using its ROBOSIM

source code written in the modeling language (See section THE ROBOSIM

MODELING ENVIRONMENT). The specified file is scanned until a 'store-file'

command is encountered with the specified object name as its argument. (See section on

THE ROBOSIM MODELING ENVIRONMENT for more details.) An optional color

parameter is also accepted. It will be used to color the whole object. (I.e. regardless of

the complexity of the ROBOSIM model, the whole object will be colored with the same

color.)

A_ents:

make-agent <name> <agent-type> [<color>]

Creates an agent. Agents are basically robots whose models have been pre-

compiled using ROBOSIM. Currently only one agent, the PUMA 560 manipulator, is

available with inverse kinematics. The user may create agents of their own design. The

PUMA 560 agent model uses the real dimensions of the arm in millimeters, so size the

other objects accordingly!

Aeent positionin2:

drive <agent> <joint angles>l<joint angle vector name>

move-straight <agent> <coordinates>

move-inter <agent> <coordinates>

find-path <agent> <coordinates>

move-straight-to <agent> <object> <coordinates>

move-inter-to <agent> <object> <coordinates>

find-path-to <agent> <object> <coordinates>

Each of the above commands positions the agent. The coordinate specifications

are agent specific, for the PUMA arm they must contain six values of either joint angles

(only for the drive command) or rectangular coordinates (x, y ,z, roll, pitch, yaw) either

workspace absolute or object relative. The movement can be straight line or joint-

- 58 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbiit University

interpolated, or the agent can be instructed to find a path to the desired location based on

its knowledge of the workspace configuration. The drive command also accepts a

previously recorded joint angle vector. (See later.)

translate-agent <agent> x=<xtran> y=<ytran> z=<ztran>

rotate-agent <agent> x=<xrot> y=<yrot> z=<zrot>

These commands are useful when small incremental motions of the robot arm are

needed. They always perform straight-line motion. The coordinate specification uses the

same scheme as the object transformation commands, that is the coordinates are named,

and any unspecified coordinate direction is assumed to be O.

minimal-step <value>

This command sets the robot movement simulation step size for the movement

commands. The value specified determines the speed at which the robot(s) will move. A

low value, e.g., 1, will result in slow robot motion, while a higher value, e.g., 10, will give

fast motion.

set-solution <agent> <value>

This command selects the inverse kinematics solution used for the agent. The

current inverse kinematics method for the PUMA 560 arm provides 8 different solutions

for (almost) any location. Some of these solutions are typically invalid due to joint angle

constraints. The accepted range for 'value' is 0...7. The argument to the 'set-solution'

command sets the configuration in the following way:

fight handed: 0..3 (bit 2 = 0)

left handed: 4..7 (bit 2 = 1)

elbow down: 0,1,4,5 (bit 1 = 0)

elbow up: 2,3,6,7 (bit 1 = 1)

wrist down: 0,2,4,6 (bit 0 = O)

wrist up: 1,3,5,7 (bit 0 = 1)

The command also accepts the special value of-1 which instructs the agent to

select the most suitable solution automatically. This is the default operation of the agent.

Note that setting a fixed configuration index will more likely result in joint limit violation

error messages, since the agent has no chance for switching solutions. For small

movements the automatic selection is based upon choosing a valid configuration which is

closest to the current joint variable values. This strategy works best when the agent is

performing various tasks in a relatively small part of the workspace. However for a major

position shift this may not be the best approach. In such cases the agent will select the

new configuration which offers the most room (i.e., all joint angles are as far from their

- 59 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VsmderbHt University

respective limits as possible) for moving around in the vicinity of the new location. To

determine which strategy to use the agent compares the joint angles of the old and new

positions. If the difference is larger than a preset threshold, the second method is used,

otherwise the first. This threshold value can be set with the following command (default

value is 45 degrees):

set-large-move-limit <limit>

In most of the cases this strategy should work fine. However it is possible that in

some cases explicit control of the robot arm configuration is necessary. (It is most likely

to occur if relatively large straight-line motion segments are needed. In straight-line

motion mode the simulator considers a configuration change an error, since it would result

in an abrupt reorganization of the links during the motion segment.) For such situations

the simulator offers the following configuration management commands:

get-solution <agent>

Prints out the currently used configuration index. Note that you will get a value

between 0 and 7 even if you use the automatic selection method.

get-valid-solutions <agent>

Prints the indices of all valid configurations for the current positions.

freeze-solution <agent>

Is equivalent to using 'set-solution' with the value obtained by using 'get-solution'.

The simulator also performs collision testing while moving the robots in the

workspace. The collision testing can be enabled/disabled with the following command:

set-collision-check <flag>

If the flag value is non-zero, collision checking is turned on, otherwise it is turned

off. Initially the collision checking is enabled.

Position reporting:

get-position <agent>

get-angles <agent>

record-angles <agent> <joint vector name>

These commands write a line of the following format to the report stream:

-60-

Final Report: Development of ROBOSIM for Acadendc/Industrlal Use VanderbUt University

position of agent <agent> in line [labeI:NNN[NNN] -- <pos>

These commands behave differently based on the operating mode of the simulator. If

the simulator is in simulation only mode, then the manipulator model's joint angles or

coordinates are reported. If the simulator is connected with a real robot manipulator then

the robot hardware is queried for the actual joint angles, the simulator's model is updated

with the reported angles, and these angles are printed out. This way the usage of these

commands will synchronize the simulator's model with the actual manipulator. For the line

numbering convention in the report stream see the explanation at the error report

messages. The get-position command prints the position in world (rectangular)

coordinates, while the get-angles command in joint angles (in degrees). The record-angles

command is similar to the get-angles command, but it also records the angles in a

coordinate vector which will be associated with the symbol specified in the command line.

Coordinate vectors can be used as parameters for drive commands, and they are generally

useful for recording important locations in the robot's workspace. The coordinate vector

data base can be saved and restored with the following two commands:

save-positions <filename>

load-positions <filename>

As an additional safety measure against inadvertently losing important data, the

simulator automatically saves the current coordinate vector set into the last used file if

either a save or a load command was executed previously.

Grastfiw,:

The simulator's grasping operations are based on grasping attributes associated

with each object in the workspace. These are the grasping coordinates -- in an object

relative coordinate frame -- and the grasping opening used to establish contact with the

object. The grasping attributes are best specified immediately aRer object creation, when

its location is still known, and then the grasping coordinates will be transformed any time

the object is moved. Commands:

define-grasping-point <object> <x> <y> <z> <roll> <pitch> <yaw>

Establishes the grasping point and hand orientation in an object-relative coordinate

frame.

define-grasping-opening <object> <distance>

Establishes the hand opening which is used to grasp the object. The hand is

CLOSED to the above distance upon grasping...

define-default-grasping-gap <distance>

-61 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

This is the EXTRA hand opening above the value specified above when the hand is

moving in to grasp the object. This is a global value, but may be overwritten for individual

object by using...

define-approach-opening <object> <distance>

The default approach opening (= grasping opening + default gap) can be

overwritten for individual objects using this call.

move-to-grasp <agent> <object>

This command moves the hand to the grasping point of the object and opens it to

the approach opening (defined using either the default gap or the individual approach

opening commands). It will give an error message if the hand already holds an object.

This command uses the 'find-path' command's method to get to the desired point.

grasp <agent> <object>

This command grasps the selected object. The hand is already supposed to have

been moved to the grasping point of the object, if not, an error message is generated. If

the hand is not empty an error message is generated. Otherwise the hand closes to the

grasping opening associated with the object, and in the simulation's data base a temporary

link is set up between the object and the last link of the robot manipulator.

release <agent> <object>

This is the opposite of grasp. It gives an error message if the hand is not holding

the specified object. NOTE: the simulator does not model effects like gravity, etc.. If an

object is released in the 'air' it will stay there in the simulated environment, but of course it

will drop in the real world --leading to inconsistencies between the world and its model.

General eraDhics setup:

look-from <x> <y> <z>

look-at <x> <y> <z>

twist-camera <angle> <incremental>

Establish parameters for the viewing transformation. The twist-camera command

is used only in the SGI implementation, where it rotates the camera around its axis. If the

second parameter is given (its value is not important, it just serves as a place holder) then

the twisting is done incrementally to the current camera angle, otherwise the angle

parameter is interpreted as an absolute angle. In the HP-UX version this command has no

effect.

- 62 -

Fired Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

define-color <name> <r> <g>

Associate a color specification with 'name'. Red green and blue intensities range

from 0.0 to 1.0.

light-source <x> <y> <z> <color> <ambient>

Specify light source. They are not needed for wire frame display, only for the

other types. The ambient parameter just serves as a place holder, its value is not

important. If it is present then the light source is ambient, otherwise it is directional.

display-type wireframelhiddenlsolidlshade

Define graphics display option to be used. Not all implementations support all

display modes, if an unsupported mode is selected, the command is silently ignored.

Physical manipulator control:

enable-execute <agentl> <agent2>

Enable sending commands to the real robots in the system. The execution will be

enable for those manipulators only which are listed in this command. Their order must

match the order in which the low-level interface function expects the coordinate vectors.

disable-execute

Opposite of the above -- only simulated execution afterwards. The system starts

up in this state.

Currently the simulator is only capable of controlling the PUMA 560 manipulator

with the UNIMATE controller, Parts of the robot control interface run on an IBM PC AT

(or compatible), to satisfy certain real-time requirements. Before the 'enable execute'

command is invoked, the robot control program running on the IBM PC must be started.

Its name is typically 'ROBOC'. After startup, the user does not have to do anything with

it. This program can also be used as a simple terminal emulator for the UNIMATE

controller. The IBM PC interface program has a self-explanatory help menu (which earl

be displayed by typing the AIt-H key combination), so a more detailed description of its

functions is not included here. NOTE: for the current SGI implementation of the

simulator the serial interface connecting the IBM PC and the graphics workstation must be

initialized. (Due to a bug in the serial driver on these machines.) This is done by entering

the robot control program's terminal emulator mode for the graphics workstation (see help

menu), logging in, and entering the 'sleep' command with a long timeout value.

- 63 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderldlt University

General:

load <filename>

Take commands from the specified file. Returns when end of file or the 'exit' (or

'end') command is encountered. Loads may be nested.

set-echo <flag>

If 'flag' is non-zero then all subsequent loads will echo the contents of the

command file as it is being processed.

exit or end

If given at the simulator prompt, exits the simulator program returning to the DOS

prompt. If given in a command file, returns to the simulator prompt.

abort

If given at the simulator prompt, exits the simulator program returning to the DOS

prompt in the same manner as the exit or end command. If given in a command file, exits

the simulator program returning to the DOS prompt.

THE ROBOSIM MODELING ENVIRONMENT:

Similar to other solid modeling software tools, ROBOSIM models the three

dimensional geometric objects using lists of their bounding polygons. The ROBOSIM

modeling language is used to specify complex geometric shapes which are used as

manipulator links or as passive cylinders, cones, extruded polygons, etc. Translational,

rotational and scaling transformations are used to combine these objects to form the

desired shape.

The ROBOSIM modeling language mimics a "geometric microprocessor" which

has a few graphics registers ("a" through "d") containing the three dimensional polygon

lists of the complex object being built. There is a designated accumulator register ('a").

Whenever, a new elementary shape (box, etc.) is created, it is concatenated to the contents

of the accumulator register. Similarly to the basic shape generation primitives, the

geometrical transformations also operate on the contents of the accumulator register.

This, together with the ability to move or concatenate geometric data to or from the other

registers enables the definition of arbitrary complex shapes in terms of a few basic

operations. Link coordinate frames can also be added to the contents of the accumulator

register thus making it possible to specify the geometric transformations associated with

the links of a manipulator. The ROBOSIM modeling language is described below.

-64-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

Solid primitive commands:

All solid objects are created with their center of mass at the origin of the world

coordinate system and their principal axis parallel with the z-axis. In each of the following

commands, the order of the arguments is up to the user.

box x=X y=Y z=Z

A rectangular parallelepiped with dimensions as specified is generated in the "a"

register with appropriate mass properties.

cylinder r=R hfH

A cylinder with circular faces perpendicular to the z-axis with the specified

dimensions is generated in the "a" register.

cone r=R hfH

A cone with circular face in the xy-plane with the dimensions specified is generated

in the "a" register.

truncated-cone rl=RL rh=RIt h=H

A truncated cone with lower circular face in the xy-plane with the dimensions

specified is generated in the "a" register.

sphere r=R

A sphere of radius, 1L is generated at the origin of the "a" graphics register.

Graphic re2ister control commands:

clear

Clears the contents of the "a" graphics register.

store b or c or d

The contents of the "a" graphics register are stored in one of the temporary

graphics registers (b,c,d). The contents of the "a" register are unchanged.

load b or c or d

- 65 -

Final Report: Development of ROBOSIM for AcadendcYlndustrla] Use Vanderbilt University

The contents of the b or c or d register are copied into the "a" graphics register

destroying its previous contents and leaving the b or c or d register unchanged.

exchange b or c or d

The contents of the b or c or d register are exchanged with the contents of the "a"

graphics register.

add b or c or d

The contents of the b or c or d register are appended to the contents of the "a"

graphics register leaving the b or e or d register unchanged.

Surface 2eneration commands:

vector xfX yfY z=Z

Generates a vector from the origin to (X,Y,Z) in the "a" graphics register.

move x=X y=Y z=Z

Generates non-visible

graphics register.

draw x=X y=Y z=Z

Generates a visible

graphics register.

NOTES:

vector from previous vector tip to (X,Y,Z) in the "a"

vector from the previous vector tip to (X,Y,Z) in the "a"

In the above commands the order of the arguments is up to the user, e.g.:

vector x=100 y=50 z=200

and

vector z=200 x=100 y=50

are both accepted.

For the current version of ROBOSIM, a minimum of two connecting (end-to-

end) lines must be drawn, and they cannot be collinear (an exception to this

constraint is a single line followed by the REV-SURFACE command). This is

due to the built-in collision detection algorithm that checks normals to polygon

-66-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

surfaces (a minimum of two connecting lines is required to define a surface).

Future versions may be modified to permit the user to exclude certain objects

from the polygon-normal check.

rev-surface

Generates a surface by revolving the contents of the "a" register about the z-axis.

A line will become a surface or solid, a surface will become a solid. Prototype curves

should be defined in a plane containing the z-axis to insure that the mass-properties

computations are correctly computed.

extrude-surface z=Z

Generates a surface by sweeping the graphical contents of the "a" register along

the z-axis. A line becomes a surface, a polygon becomes a solid. The extrusion will be

from -Z/2 to +Z/2.

Model manipulation commands:

translate x=X y=Y z=Z

Translates the graphical contents of the "a" register the specified relative distance.

rotate x=X or y_Y or z=Z

Rotates the graphical contents of the "a" register by the specified angle in degrees

about the x,y, and z axes of the world coordinate frame.

scale x=X y=Y z=Z

Multiplies the graphical contents of the "a" register by the specified amounts along

the x,y, and z axes.

In each of the above model manipulation commands, the order of the arguments is

up to the user.

File control commands:

execute-file fname

The ROBOSIM commands contained in the external file, fname, are placed in

place of this instruction. All commands are allowed except "execute-file" itself.

- 67 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

store-file fname

Stores the graphical and mass properties contained in the "a" register into the file

specified. The contents of the "a" register are unchanged.

store-link robot-name.([LOC] [LO] [L1]...)

This command adjusts the link data contained in the A-register such that the

coordinates are consistent with Hartenburg-Denavit link definitions. The data is then

stored in file robot-name.EXT, where EXT<(LOC,L0,L1,L2,L3...LN). LOC indicates the

specification for the robot's base location, while L0...LN contain the data for the first N

links of the robot.

Special commands:

end

Terminates execution of the ROBOSIM process and returns to the monitor.

set-nface N=n

Sets the number of facets generated to approximate a circular surface. This

specification affects the solid primitive routines and the rev-surface command.

set-density d=D

Sets the default mass-density for solids defined by the primitives, extrude and rev-

surface command. A negative value may be used to create a "hole" in a previously defined

solid or a zero may be specified to create a massless graphic entity.

Link joint specification:

(r, p or f)-joint-(i or i+l)

A revolute, prismatic, or fixed joint is specified by the prefix r, p, or f, respectively.

The suffix, "i", indicates the joint is closer to the robot base than the joint specified with

suffix, "i+l". As an example, a revolute joint defined in a robot link located on the base

side of link would be specified by the command, r-JOINT-i.

- 68 -

Final Report: Development of ROBOSIM for Acadendc/Industrial Use VanderbUt University

APPENDIX C:

ROBOSIM TUTORIAL

Getting Started:

Before attempting to operate ROBOSIM, you should print a copy of the

ROBOSIM manual. Two formats are provided: MANUAL.WP and MANUAL.

MANUAL.WP is formatted in WordPerfect 5.1; MANUAL is formatted in plain DOS

text. The ROBOSIM manual contains a description of all of the commands available in

the interactive simulator mode, and a description of all of the commands used in

constructing models with the ROBOSIM modeling language.

To help you get started, let's first examine the SETUP.CMD file in the ROBOSIM

root directory. You may wish to obtain a listing of this file by printing a copy. Lines

beginning with a semicolon are considered comment lines. You will note that the first set
of non-comment lines are color definitions. Other colors could be defined by altering the

weights of the red green and blue fields. The next set of commands are the view

commands. As you use the simulator, you will find frequent need to change the look-at

and look-from commands to alter your perspective of the simulated environment. These

two commands will be your way of "walking around the simulated environment" to alter

your view. Following the view commands is the collision-check command. Here collision

checking is turned Off by setting the argument of the set-collision-check command to 0

(any other number would turn On the collision checking algorithm). The next command

(minimal-step) in the SETUP.CMD file sets the speed of operation. This commands sets

the robot movement simulation step size for the movement commands, and hence,

controls the speed of operation. A small step size, e.g. 1, results in a slow speed. A large

step size, e.g., 10 results in a faster speed. You will need to try different values for the

minimal-step size to achieve the desired speed of operation for your system. Finally, the

last two commands create the "floor" of the simulation by creating a box of dimensions

x=2000, y=2000, and z=60. The box created with the make-object command is centered

at its center of gravity. The second command translates the floor down by 30 units so that

its top is in the z=0 plane. (The x-axis is right (-) to left (+). The y-axis is in (-) and out

(+) of the screen. The z-axis is bottom (-) to top (+).) The final command in the

SETUP.CMD file is an end statement, which should always be present as the last

statement. The SETUP.CMD file will normally be used to build the entire simulated

environment (workspace, robots, positioners, etc.). A SETUP.CMD file tailored to the

user's specific needs will be a part of almost all applications of the ROBOSIM simulator.

Other command files will then be used to operate the machines setup in the SETUP.CMD

file. While this procedure is ofcen followed, it is not necessary, however, as we will see.

We will now load the simulator in preparation for demonstrating some of the

interactive commands. To do this we should first type 'init' at your ROBOSIM directory.

This only needs to be done once after you first turn your system On. This sets the driver

and specifies the path where the fonts are located. These two commands may be included

- 69 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

in your autoexec.bat file, if you wish to eliminate the need for the initial 'init' command.

To run the simulator type 'robo386'. The interactive window with robag> prompt and

floor constructed in the SETUP.CMD file will be displayed on the screen. Summarizing,

the sequence of commands to reach this point are:

<c:_> cd robosim

<cArobosim> init

<c:h'obosim> robo386

As we go through the remainder of this tutorial, we will introduce changes to the

SETUP.CMD files using your text editor. As these changes are introduced, they must be

made at that time in order that subsequent demonstrations of commands will work. We

will also be demonstrating how additional "data" files can be constructed for modeling

objects, robots, positioners, etc., and how "command" files can be constructed for

commanding motion sequences of the simulated cell.

Creating and Driving a Robot:

We can create a robot in our simulated environment by typing the following

command at the robag> prompt:

robag>make-agent rl puma560 yellow

This command will create a yellow, puma robot (named rl) with its base located at x=0,

y=0, z=0. As stated in the manual, under the 'make-agent' command, currently only one

agent is available, the PUMA 560 manipulator. We may build other robots or positioners

but we can only move them with the 'drive' command. All of the other commands require

the inverse kinematic solutions which are currently only available for the PUMA. Future

versions of ROBOSIM will permit the user to incorporate inverse kinematic solutions for

any robot or positioner.

To demonstrate the positioning commands available to move the robot, type the

following command at the robag> prompt:

robag>drive rl 90 -90 90 0 0 0

The robot will move to a straight-up position. Remember that you can change the speed

of its motion by changing the step size with the 'minimal-step' command. In the 'drive'

command, the 6 values following the robot name are the joint angles you wish to drive the

robot to. All six angles must be specified even if some are zero. To drive the robot back

to its home position, type:

robag>drive r 1 0 0 0 0 0 0

We may reduce the work involved in commanding the robot to drive to a specified set of

- 70 -

Final Report: Development of ROBOSIM for Acadendc/Industrlal Use VanderbHt University

joint angles by using the 'record-angles' command. For example, with the robot at its

home position, we may type:

robag>record-angles rl h

This will create a joint vector named h (for home). Now if we move back to the vertical

position by typing,

robag>drive rl 90 -90 90 0 0 0

we can return to the home position by simply typing,

robag>drive rl h

We could have defined a joint vector for the vertical position of the robot as well. Indeed,

we can define as many joint vectors (corresponding to different positions of the robot) as

we wish. Then we can drive to a desired position by simply specifying its joint vector

name in the 'drive' command. If you wish to save your set of joint vectors, you may do so

with the 'save-position' command. Then, each time you load the simulator, you can also

load the joint vectors with the 'load-positions' commands. This command could also be
included in the SETUP.CMD file so that the joint vectors would be automatically loaded.

To demonstrate, let's drive the robot to the vertical position and define a joint vector for

that position:

robag>drive rl 90 -90 90 0 0 0

robag>record-angles rl v

We may now drive between the vertical and home positions by typing,

robag>drive rl h

robag>drive rl v

To save these two joint vectors type,

robag>save-positions pos

This will save the 'h' and °v' joint vectors in a file named 'pos'. The file 'pos ° will be created

in your ROBOSIM directory. A listing of this file will show that it contains two lines

defining the 'h' and 'v' joint vectors. These vectors may be loaded at any time from the

robag> simulator prompt by typing,

robag>load-positions pos

As stated above, this command could also be included in the SETUP.CMD file, so that the

'h' and 'v' joint vectors would be automatically loaded upon entering the simulator

-71 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbiit University

program.

At this point, let's exit the simulator program (by typing 'exit' or 'end' at the robag>

prompt. Before reentering the simulator program, let's modify our SETUP.CMD file so

that our robot will be automatically created, and our joint vector file will be automatically

loaded. If you wish to save the original version of the SETUP.CMD file, you may copy it

to SETUP.ORG (for original setup file). To modify the SETUP.CMD file, use an editor

to add the following two lines (boldface) immediately before the 'end' command.

translate-object floor z=-30

make-agent rl puma560 yellow

load-positions pos

end

Let's also turn On the collision-check algorithm by modifying (with your text

editor) the 'set-collision-check' command in the SETUP.CMD file to read:

set-collision-check 1

Now when you enter the simulator program by typing robo386, you should see the

robot and the floor. You can also, command the robot to drive to the vertical position by

simply typing 'drive rl v', since the joint vector 'v' has been loaded. You may likewise

drive to the home position by simply typing 'drive rl h'.

Robot Positioning Commands:

As you will find in reading the ROBOSIM manual, there are a number of

commands used for positioning the robot (agent). We will look at some of these now.

Consider the 'translate-agent' command. This command always performs straight-line

motion. To demonstrate, move the robot to the home position, and then type,

robag>translate-agent rl x=300

The robot will move in a straight line in the x-direction, maintaining the same orientation

of the end-effector. We can obtain the position of the end-effector with the 'get-position'

command,

robag>get-position rl

The simulator will respond with

Agent rl coordinates: 711.48 149.10 1160.78 0 0 180

- 72 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt Unive_ity

The first three numbers give the xyz position of the end-effector. The last three numbers

give the orientation of the end-effector in terms of roll, pitch, and yaw.

We can also get the joint angles at this position of the robot with the 'get-angles'

command,

robag>get-angles rl

The simulator response will be

Agent rl joint angles: 0 -15.56 61.22 0 -45.66 0

Next, use the 'translate-agent' command to move in the negative x-direction with,

robag>translate-agent rl x=-1400

Again, use the 'get-position' and 'get-angles' commands to obtain the position and joint

angles at this location of the end-effector. The results are,

Agent rl coordinates:-688.52 149.10 1160.78 0 0 180

Agent rl joint angles: 0 -127.83 52.78 0 75.06 0

Let's now use the 'move-inter' command to move back to the let_-hand position.

The 'move-inter' command moves the robot with linear joint interpolation. With this

command, we specify the position and orientation (3 position values and 3 values for roll,

pitch, and yaw) that we wish to move to. Each joint moves linearly to accomplish this.

The speed of each joint is such that all joints start and stop motion at the same time. The

'move-inter' command is,

robag>move-inter rl 711.48 149.10 1160.78 0 0 180

You will observe that the robot moves in an arch to get to the specified position. With

joint-interpolated motion the trajectory of the end-effector is not specified between the

start and stop positions.

We will now return to the right-hand position using the 'move-straight' command.

Again, we specify the position and orientation that we wish to move to. With this

command, however, the robot will move along a straight-line between the start and stop

points. To return along a straight-line to the right-hand position, we issue the command,

robag>move-straight rl -688.52 149.10 1160.78 0 0 180

Now, the end-effector moves along a straight-line to the specified position, just as it did

with the 'translate-agent' command.

- 73 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

Next, we will examine the 'find-path' command. This command triggers a set of

heuristic rules that will attempt to move the robot from its initial position to the specified

final position without any collisions with objects in the workspace. We will first issue the

command to find a collision-free path to the previous left-hand position of the robot,

robag>find-path rl 711.48 149.10 1160.78 0 0 180

We observe that the end-effector moves along the same arch as with the 'move-inter'

command.

Now let's construct a box and position it such that the arched path results in a

collision. The algorithm triggered by the 'find-path' command will then search for a new

collision-free path to the specified final position. We first construct the box (named bl)

and translate it to a position that will result in a collision:

robag>make-object bl box 100 100 100 green

robag>translate-object b 1 y= 149.10 z= 1300

Now let's issue the find-path command instructing the robot to find a path from the left-

hand position (711.48 149.10 1160.78 0 0 180) to the right-hand position (-688.52 149.10

1160.78 0 0 180):

robag>find-path rl -688.52 149.10 1160.78 0 0 180

You will observe that the robot first tries to move to the specified right-hand position by

moving in an arched path but this results in a collision with the box. A collision-free,

built-in path planning algorithm then takes over and tries to maneuver past the box with

the arm folded. For this position of the box, this maneuver works and the robot is able to

move to the final position. Then the robot returns quickly to the start position and repeats

the learned collision-free path in one continuous motion. If you were to lower the box by

50 units in the z-direction (translate-object bl z---50), several minutes may be required

(varies with the speed set by the minimal-step setting) for the robot to find a collision-free

path. You may or may not want to try this because of the time required to complete the

search. If you do try a lower box position, and wish to stop the motion prior to

completion of the search, you may do so by pressing 'eontrol-c'. This will leave you in the

graphics screen mode, so you should then type 'robo386' and then 'exit' at the robag>

prompt in order to make an orderly exit back to DOS.

Let's now exit and then reenter the simulator after modifying the SETUP.CMD file

again. We will then demonstrate the commands for moving to a specified object. For the

demonstration we will let the object be a box of dimensions x=300 y=100 z--400. We

could construct the box interactively from the simulator robag> prompt. Instead of doing

this, however, we will again modify the setup.cmd file to include the box. The additional

commands to add to the SETUP.CMD file with your editor are shown below in boldface.

- 74 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

translate-object floor z=-30

make-agent rl puma560 yellow

load-positions pos

make-object bl box 300 100 400 ¢yan

translate-object bl x=-500 z=201
end

The two additional commands will create a box (cyan color) of the desired dimensions and

translate it 500 units in the negative x-direction and 201 units in the positive z-direction.

The latter command will position the box 1 unit above the floor. Now when we enter the

simulator program by typing 'robo386', we should see the robot located at the center of

the floor and the box b 1 positioned one unit above the floor and 500 units to the right of

the robot.

We will now use the 'move-inter-to' command to move the robot's end-effector to

a position 1 unit above the box, centered on the y-axis, and 100 units to the fight of the y-

axis along the x-axis. The complete command is

robag>move-inter-to rl bl -100 0 201 180 0 0

The first three numerical arguments of this command specify the desired position of the
end-effector relative to the box's coordinate fi'ame. The box's coordinate frame is at its

center of mass. Thus the specified position (-100 0 201) will locate the end-effector 1 unit

above the box and 100 units along the negative x-axis (right of center). The last three

numerical arguments of the 'move-inter-to' command specify the orientation of the end

effector in terms of roll, pitch, and yaw about the x, y, and z axes of the world coordinate

frame. A roll of 180 degrees about the x-axis is required to avoid a joint violation. We

can obtain the position and orientation of the end-effector in world coordinates by issuing

the 'get-position' command,

robag>get-position rl

The simulator responds with, the message

Agent rl coordinates: -600.00 0.00 402.00 -180.00 0.00 0.00

The robot is centered on the world coordinate frame. The center of the box was

translated 500 units along the negative x-axis, and the position specified to locate the end-

effector in the box coordinate frame was -100 units along the x-axis. Thus in absolute

coordinates, the x-axis position of the end-effector is -(500+100) = -600 as obtained from

the 'get-position' command. Likewise, we specified the z-axis position relative to the box

- 75 -

Fired Report: Development of ROBOSIM for Acmdemlc/lndustrtal Use VanderbHt University

frame as 201, which is 1 unit above the box. Since the box was originally translated to a

position 1 unit above the floor and is itself 400 units high (z-direction), the absolute

position of the end-effector is 201+201 = 402 as obtained from the 'get-position'

command. The roll angle is -180 even though we specified 180. The system does not

distinguish between the two.

Next, let's try to reposition the end-effector so that it is positioned to the left of the

box's center by 100 units and maintains the same y and z coordinates. If we try to

accomplish this with the 'move-inter-to' command, a collision will be detected, and the

robot will not move. This is because the 'move-inter-to' command attempts to make the

commanded move in an arc that causes a collision between the robot and the box.

(Remember that the end-effector is located only 1 unit above the box.)

We can avoid this problem by use of the 'move-straight-to' command,

robag>move-straight-to rl bl 100 0 201 180 0 0

Now you will observe that the end-effector moves in a straight line, at a spacing of 1 unit

above the box, to the specified location.

We could have also accomplished the last move with the 'find-path-to' command.

To demonstrate, let's move back to the fight-hand side of the box with the command,

robag>find-path-to rl bl -100 0 201 180 0 0

We observe that the robot moves up and outward to avoid a collision with the box

in moving to the specified position.

We have now discussed most of the simulator commands available for positioning

the robot. The remaining commands, that we will discuss next, involve grasping and

moving into position to grasp. Before demonstrating these commands, let's exit the

simulator by typing 'exit' at the robag> prompt and then reenter the program by typing

robo386 at the DOS prompt. With the SETUP.CMD file, as previously modified, the

robot should appear with the box b 1 located to its right.

Let's now define a grasping point on the box and move the robot into position to

grasp the box. Once we have done this, we may grasp the box and move it to another

location.

The grasping point is defined with the following command,

robag>define-grasping-point b 1 0 0 201 180 0 0

This defines the grasping point to be centered on the top of the box and 1 unit above the

top.

- 76 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

We can now move the robot into position to grasp the box with the command,

robag>move-to-grasp r 1 b 1

The robot will be observed to move into position to grasp the box. To grasp the box, we

issue the command,

robag>grasp rl bl

The box is now attached to the end-effector and will move with the robot. To

demonstrate let's return the box to the home position, release it, and swing the robot out

of the way. The commands are,

robag>drive rl h

robag>release rl bl

robag>drive rl 135 0 0 0 0 0

The simulator knows that the box has been moved to a new location. To demonstrate let's

use the 'move-inter-to' command to move the end-effector to the lower fight side of the

box. Remember that this command is given in terms of the object coordinate frame. The

command is,

robag>move-inter-to rl bl 100 0 201 180 0 0

The robot is observed to move its end-effector to the designated position on the box.

Now let's exit the simulator by typing 'exit' at the robag> prompt.

Using the ROBOSIM Modeler:

So far, we have used commands available in the ROBOSIM simulator to create

robots, make elementary objects, and move them about with the robots. If we wish to

model a more complex object or if we wish to model a robot (other than the Puma 560

which is available) or positioner with moving joints, we must do so with the ROBOSIM

modeling language. Once we have created the model, we can then view, move, and use

the model in the ROBOSIM simulator. In this section we will discuss the basic steps

required for creating models with the ROBOSIM modeler and calling them with the
simulator.

We create models with the ROBOSIM modeler using an editor and the commands

listed under the section THE ROBOSIM MODELING ENVIRONMENT. To

demonstrate, use your editor to create a file called SOLIDOBJ.DAT with the following
commands:

- 77 -

Final Report: Development of ROBOSIM for Acadendc/lndustrlal Use Vanderbiit University

move x=200 y=0 z=0

draw x=0 31=-400 z=0

draw x=-200 y=0 z=0

draw x=200 y=0 z=0
extrude-surface z--400

store-file trisolid

end

The first command generates a non-visible vector from the previous vector tip (in this

case, the origin) to (X,Y,Z) in the "a" graphics register. The next command then

generates a visible vector from (200,0,0) to (0,-400,0). The third command generates a

visible vector from (0,-400,0) to (-200,0,0), and the fourth command completes the

formation of a triangular polygon with vertices (200,0,0), (0,-400,0), and (-200,0,0). The

fifth command generates a solid triangular object by sweeping the triangular polygon

contained in the "a" register along the z-axis. The solid generated will be 400 units long,

extending from -200 to +200 along the z-axis. The sixth command stores the graphical

contents of the "a" register (in this case, the triangular solid) into the file called 'trisolid'.

The final 'end' command terminates the ROBOSIM file.

The suffix '.DAT' on the SOLIDOBJ.DAT file that we have created is

recommended but not necessary. The recommended practice is to use the '.DAT' suffix

for ROBOSIM data files such as this one, and the '.CMD' suffix for simulator command

files such as in the SETUP.CMD file. We will have more to say about other types of

command files in a later section.

Before we can use the object created in the SOLIDOBJ.DAT file we must call for

it from the simulator program. To do this we make use of the 'make-robosim'object'. This

may be done interactively from the simulator robag> prompt, or the command may be

inserted into the SETUP.CMD file. Using the latter alternative, let's use an editor to

modify the SETUP.CMD file as follows (new commands in boldface print),

translate-object floor z=-30

make-agent rl puma560 yellow

load-positions pos

make-object bl box 300 100 400 cyan

translate-object bl x=-500 z=201

make-robosim-object obj solidobj.dat trisolid green

translate-object obj x=500 z=201
end

The 'make-robosim-object' command has three arguments plus an optional color

- 78 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

specification. The first argument is the name we wish to give the object in the simulator.

Here we have called it "obj". The second argument is the file name of the ROBOSIM file

we previously built with the modeling language to create the triangular solid. The third

argument is the object name specified by the 'store-file' command in the SOLIDOBJ.DAT

file. The 'make-robosim-object' command causes the SOLIDOBJ.DAT file to be scanned

until the 'store-file' command is encountered with the specified object name (in this case,

'trisolid') as its argument.

Once we have used an editor to build the SOLIDOBJ.DAT file and have modified

the SETUP.CMD file to call this file, the triangular solid will appear on the simulator

display when we run the simulator by typing 'robo386' at the dos prompt. The triangular

solid will appear 500 units to the lett of the robot and 1 unit above the floor, as set by the

'translate-object' command above.

The triangular solid, obj, can now be grasped, moved, etc., just as elementary

objects constructed directly in the simulator. As previously stated, the ROBOSIM modeler

provides much greater flexibility in building complex shapes than can be done directly in

the simulator, and the modeler must be used for creating parts with moving joints, such as

robots and positioners.

Using a Command File:

So far, we have operated our robot by entering commands one by one in the

simulator's interactive window. Let's now develop a command file containing a sequence

of commands, and show that this can be called by the single command 'load <filename>'.

Let's use our editor to build a file called SWlTCH.CMD with the following commands:

define-grasping-point obj 0 -100 201 180 0 0

define-grasping-point bl 0 0 201 180 0 0

move-to-grasp rl obj

grasp rl obj

record-angles r 1 ang- 1
drive rl 90 -28.48 196.73 0 11.75 -28.31

record-angles rl ang-2

release rl obj

move-to-grasp r 1 b 1

grasp rl bl

record-angles rl ang-3

drive rl ang-1

release rl bl

drive rl ang-2

grasp rl obj

drive rl ang-3

release rl obj

drive rl h

- 79 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

end

The objective of the above command file will be to use the robot to switch the

places of the two objects bl and obj. To do this we will first move obj out of the way.

Then we will grasp b 1 and move it to where obj was originally. Finally, we will retrieve

obj from its temporary location and move it to where bl was originally. We then drive rl

to its home position and end the program. In lines 1 and 2 we define the grasping point

for objects obj and bl. In line 3 we move rl into position to grasp the object obj, and in

line 4 we grasp it. So that we will be able to return rl to this same location, we record its

angles in the file ang-1 in line 5. We then move the object obj out of the way by swinging

the robot 90 degrees (first joint) with the drive command in line 6. (The other angles of

the drive command were obtained by observing the angles recorded in the 'record-angies'

command when done interactively from the simulator's window.) This will be the

temporary location for parking obj while we move b l into its previous location. So that

we will be able to return to get it, we record rl's angles in line 7 and store them in file ang-

2. We then release obj in line 8, and move to grasp bl in line 9. In line 10 we grasp bl,

and in line 11 we record rl's angles in file ang-3. Then in line 12 we drive rl to ang-1,

release bl in line 13, and drive rl to ang-2 to retrieve obj in line 14. In line 15 we grasp

obj, and drive rl to ang-3 in line 16. We release obj in line 17, and drive rl to the home

position h in line 18. Finally, we end the command file with an 'end' statement.

To run this command file, enter the simulator by typing 'robo386' at the DOS

prompt. Then at the robag> prompt type 'load switch.cmd'. If everything is done

correctly, the robot should switch the locations of the two objects and return to its home

position. Type 'exit' at the robag> prompt to return to DOS.

Examples:

The reader is referred to the EXAMPLE files for more extensive examples of using

the ROBOSIM modeler to develop complex objects and robots. Further explanations of

the various modeler commands is given in these examples. The reader's attention is

particularly directed to the 'ARM.DAT' file in EXAMPLE3 for a discussion of the link

joint specifications, and how to use these commands in building rotary or prismatic joints.

The reader may also wish to print out a listing of the PUMA560.DAT file to see how the

robot was constructed and how the link joints were assigned.

-80-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

APPENDIX D:

ROBOSIM INSTALLATION INSTRUCTIONS

System Requirements:

This diskette contains a PC version of the graphical robot simulation program

ROBOSIM. The system requirements are:

A 386 (with 387 math coprocessor) or a 486 cpu

About 2 Megabytes of RAM (the program will run in less memory, but

then it will swap to disk)

The system MUST NOT have any program (driver or TSR) installed which

puts the 386 into protected or virtual 8086 mode. Examples of such

programs are expanded memory emulators, some debugger drivers,

WINDOWS in 386 mode, etc. The only exceptions to this rule are VCPI

compliant EMS emulators like QEMM.

Installation:

The following installation instructions assume that you will install ROBOSIM on

your hard drive (c-drive) in a directory ROBOSIM and that you will copy the files on this

diskette from your a-drive. If your drive designations are different or if you wish to install

the program into a different directory, you will need to make appropriate changes.

At the c prompt, type

<C:_>mkdir robosim

Change to the new robosim directory by typing

<C:\>cd robosim

Next xcopy all of the files and subdirectories from this diskette by typing

<C:LROBOSIM>xcopy a:*.*/s/e

Perform a directory listing by typing

C:LROBOSIM>dir

The directory listing should show the following files and directories:

ROBO386.EXE

GO32.EXE

-81 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbflt University

SETUP.CMD

INIT.BAT

PUMA560.K/N

PUMA560.DAT

MANUAL.WP

MANUAL

INSTALL.WP

INSTALL

TUTORIAL.WP

TUTORIAL

README. 1 ST

FONTS

DRIVERS

EXAMPLE1

EXAMPLE2

EXAMPLE3

EXAMPLE4

EXAMPLE5

EXAMPLE6

EXAMPLE7

EXAMPLE8

EXAMPLE9

EXAMPL10

EXAMPL 11

EXAMPL12

EXAMPL 13

EXAMPL14

<DIR>

<DIP,>

<DIP,>

<DIR>

<DIR>

<DIR>

<DIR>

<DIP,>

<DIR>

<DIR>

<DIR>

<DIR>

<DIR>

<DIR>

<DIR>

<DIR>

The batch file init.bat contains commands that select the graphics

specifies the path to the fonts directory. As supplied, the init.bat file is

set GO32=driver c:krobosim\drivers\vgal6.grd gw 640 gh 480 tw 80 th 25

set GRXFONT=c:h'obosim_fonts

driver and

If you have copied the ROBOSIM files to a different directory than c:h'obosim, then you

should use an editor to modify the ink.bat file accordingly. The driver vgal 6.grd specified

above in the default init.bat file is one of three generic choices. It may or may not work,

or be the best choice, on your system. To determine if it will work, type init from the

robosim directory, i.e.,

<C:kROBOSIM>init

Then type robo386 at the prompt, i.e.,

<C:kROBOSlM>robo386

- 82 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

If the vgal6.grd driver is appropriate for your system, then you should see a window at

the bottom of the screen with the prompt robag>, and a rectangular floor above the

window. If this is the case, you may now skip to the section on Operation. If you wish to

choose a driver specific to your system, read on.

If the vgal6.grd driver is inappropriate for your system, then you may select the

proper graphics driver (which must correspond to the graphics adapter in your system) by

setting the GO32 environment variable (using your editor) in the init.bat file:

set GO32=driver c:krobosim\drivers\driver.ext gw ??? gh ??? tw ??? th ???

The available drivers are included in the DRIVERS subdirectory. Generic choices are:

EGA 16. GRD

VGA16.GRD

VGA.GRD

16 color EGA 320X200 or 640X350

16 color VGA 320X200 or 640X350 or 640X480

256 color VGA 320X200 only

The VGA drivers above should work with any VGA board. Additionally there are board-

specific Super VGA drivers in the DRIVERS subdirectory, most of them for 256 colors.

(Exception: tseng416.grd which is a 16 color driver.) You will note that all of the driver

files contained in the DRIVERS subdirectory have a grd extension except the

ATIULTRA.GRN driver file. The gw (graphics width), gh (graphics height), tw (text

width), and th (text height) fields can be used to specify the default graphics and text

resolutions, respectively.

If you do not know the name of the graphics adapter in your system, you should

try different drivers from the DRIVERS subdirectory until you find one that works

(starting first with the generic choices listed above). For example, some Gateway 2000

computer systems use the ATIULTRA graphics adapter, so there the GO32 environment

variable would be changed in the init.bat file to:

set GO32=driver c:\robosim\drivers\atiultra.grn gw 640 gh 480 tw 80 th 25

This specifies the ATIULTRA.GRN driver file with a graphics resolution of 640X480

pixels and a text resolution of 80X25 lines. These are the default settings for this driver so

they could be omitted as in:

set GO32=driver c:krobosim\driverskatiultra.grn

which would give the same graphics and text resolutions. The ATIULTRA.GRN driver is

capable of higher resolutions, including for example 1024X768 graphics resolution.

Changing the GO32 environment variable to

set GO32=driver c:\robosim\drivers\atiultra.grn gw 1024 gh 768

- 83 -

Final Report: Development of ROBOSIM for Academic/Indmtrtal Use VanderbUt University

will provide the specified higher resolution. Different text resolutions could also be

specified. Note: the standard text resolution of 80X25 is recommended, and a graphics

resolution of 640X480 is recommended as a good compromise between intensity and

resolution.

The second line of the init.bat file specifies the directory where the fonts are

installed. If you have installed the ROBOSIM files in a directory other than

C:_.OBOSIM, then this line will need to be changed as well as the first line to reflect the

different directory that you have chosen.

Operation:

Once you have completed the above steps, ROBOSIM should be ready to run on

your system. The procedure is to change to the ROBOSIM directory, run the initiate

batch file by typing 'init', and type robo386. After startup, the program executes the

commands from the file 'setup.cmd' and displays the results on the screen with an

interactive window and robag> prompt. The simulator mode may be exited by typing 'exit'

at the robag> prompt.

-84-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

APPENDIX E:

EXAMPLE FILES AND GRAPHIC DISPLAY

EXAMPLE 1: OBJECT CONSTRUCTION

This example contains two files, OBJECT.DAT and SETUP.CMD. The purpose

of the example is to show how complex objects may be constructed from solid primitives

using the ROBOSIM modeling language. There are two approaches you may use to run

the example: one, you may copy the OBJECT.DAT and SETUP.CMD files into your

ROBOSIM root directory and run the program from there, or two, you may copy the

ROBO386.EXE file from your root directory into this EXAMPLE1 directory, and run the

program from this directory. If you use the first approach, you may want to copy the

SETUP.CMD file in your root directory to something else so that you can recover it later.

If you use the second approach, you will need to run the initiation batch file INIT.BAT

from the ROBOSIM root directory where it exists before switching to the EXAMPLE1

directory to run the example. This is necessary to tell the simulator program where the
FONTS and DRIVERS directories are located.

An explanation of the program is contained in the comment statements of the

OBJECT.DAT and SETUP.CMD files. Before attempting to run the example, you may

wish to print a copy of these two files. You will observe in the OBJECT.DAT file there

are several 'store-file comp-obj' commands, with all but the last commented out with a

semicolon. These commands may be used to view different stages of the object as it is

constructed. For example, if you precede the last 'store-file' command with a semicolon

(thereby commenting it out) and delete the semicolon in front of the first 'store-file'

command, you will observe the single box constructed with the first non-commented

command of the file. In a similar manner you may select other store-file commands to

view different stages of the object's construction.

To run the program type 'robo386' at the DOS prompt. This will enter the

simulator and display whatever precedes the 'store-file' command. You may exit the

simulator by typing 'exit' at the robag> prompt. As discussed above, you may then use

your editor to select a subsequent 'store-file' command in order to view a later stage of the

construction of the composite object.

FILE: SETUP.CMD

SETUP.CMD

The simulation environment of ROBOSIM is an interactive

mode. The commands entered by the user are immediately

executed and their results are printed or displayed on the
screen. The simulator's code is contained in one executable

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

file named 'robo386'. Typing 'robo386' at the shell prompt

will invoke it. Upon startup the simulator initializes the

graphics display and loads in initial commands from the

file named 'setup.cmd'. The 'setup.cmd' file, as we will

construct here, normally contains as a minimum the color

definitions, the view commands, and reference to object

and/or robot agent files•

COLOR DEFINITIONS

define-color red 1.00 0.00 00.0

define-color green 0.00 1.00 0.00
define-color blue 0.00 0.00 1.00

define-color black 0.00 0.00 0.00

define-color purple 1.00 0.00 1.00

define-color cyan 0.00 1.00 1.00

define-color yellow 1.00 1.00 0.00

define-color white 1.00 1.00 1.00

define-color rose 0.70 0.20 0.20

define-color gold 0.50 0.50 0.20

define-color It-grey 0.75 0.75 0.75
• ___t_t_*_4t_____

VIEW COMMANDS

look-at 0 0 700

look-from 5000 0 1000
• ,__t________

, The following command is used to create a composite

, object using the ROBOSIM modeling environment source code.

; The specified '.dat' file is scanned until a 'store-file'

; command is encountered with the specified object name

; (comp-obj) as its argument. The composite object is named

; 'object-l' in the simulation environment. The object

; 'object-l' may be moved, grasped, etc., with the interactive

; commands of the simulation environment.

make-robosim-object object-1 object.dat comp-obj green

set-collision-check 0

end

FILE: OBJECT.DAT

OBJECT DAT

- 86 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

, The purpose of this program is to demonstrate how

; objects may be constructed from solid primitives using

; commands from the ROBOSIM modeling environment.

; Any convenient editor may be used to assembly the

; program. The program file may be named anything you wish

; with a suffix of dat. Here I have called the file

; object.dat. As can be seen, comments may be added by

; preceeding them with a semicolon.

box x--200 y=400 z=600

The above command stores the graphical and mass

properties of a box of the indicated dimensions in the A-

register. The box will be centered at the origin of the

display when we view it in the simulation environment. To

prepare the box for display, we store it in a file comp-obj,

as done next. The semicolon must be removed before the

store-file command will be executed. As we construct our

composite object, we will be viewing the results as we go

along. For this reason, the program will contain a number
of<store-file> commands that have been "commented out" with

the semicolon, once we proceed beyond that point in the

, program.

, store-file comp-obj

, To view the box we must prepare a setup.cmd file that

includes the simulation enviroment command <make-robosim-

object>, as described elsewhere. Then when we enter the

simulation environment by typing robo386, the box will be

displayed at the origin.

store b

clear

The above command stores the contents of the A-register

in the B-register.

The <clear> command clears the A-regi_er.

cone r=100 h=500

, The preceeding command _ores the graphical and mass

; properties of a cone of the indicted dimensions in the A-

- 87 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

store b

; register. The cone will be centered at the origin at its

; center of mass.

; store-file comp-obj

translate x=0 y=0 z--467

; store-file comp-obj

add b

The above command adds the contents of the B-register

(box constructed previously) to the A-register. Now, when

viewed, our composite object will consist of the box with

the cone attached to its top.

; store-file comp-obj
clear

vector x=0 y=300 z=0

; The preceeding command draws a line from the origin to

; the point specified. Note: If we were to try to view the

; single line, it would not be displayed. The reason is that

; the present version of ROBOSIM checks all objects (the

; single line is an object) for perpendicular directions to

; polygon surfaces. Since a single line does not define a

; polygon, the line is simply not displayed.

; ***

; store-file comp-obj

translate x=0 y= 100 z=0

; The above command translates the line 100 units along

; the y-axis.

draw x=0 y=400 z--400

; The draw command generates a visible vector from the

; previous vector tip to the point specified.

draw x=0 y=200 z=300

draw x=0 y=100 z--0

; store-file comp-obj
roy-surface

; store-file comp-obj

translate x=0 y=0 z=800
add b

; store-file comp-obj

- 88 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt University

rotate x=45

store-file comp-obj
end

ROBOSIM t_t

nOBAG _|

ROSI_>I

Figure E. 1. Sample display for Example 1.

EXAMPLE 2: FRAME ROTATIONS

The files in this example will produce 2 identically labelled frames (framel and

frame2) that are useful for demonstrating rotations of one frame about another.

To run the example, you must first load the ROBO386.EXE file from your

ROBOSIM root directory into this directory. You must also run the initiation batch file

INIT.BAT from the root directory in order to tell the simulator program where the

FONTS and DRIVERS directories are located. To run the program type 'robo386' from

the DOS prompt in this directory. Use the command 'rotate-object framel x=X y=Y z=Z '

(X, Y, and Z in degrees) to rotate framel relative to frame2.

The 'look-at' and 'look-from' commands are initially set in the SETUP.CMD file as,

look-at 0 0 0

look-from 0 500 0

You may wish to change the 'look-from' command interactively from the robag> prompt

to obtain a better viewing position for the rotations you make. You may exit the simulator

mode by typing 'exit' at the robag> prompt. This will return you to the DOS prompt.

FILE: SETUP.CMD

- 89 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

; SETUP.CMD

; COLOR DEFINITIONS

define-color red 1.00 0.00 00.0

define-color green 0.00 1.00 0.00
define-color blue 0.00 0.00 1.00

define-color black 0.00 0.00 0.00

define-color purple 1.00 0.00 1.00

define-color cyan 0.00 1.00 1.00

define-color yellow 1.00 1.00 0.00
define-color white 1.00 1.00 1.00

define-color rose 0.70 0.20 0.20

define-color gold 0.50 0.50 0.20

define-color It-grey 0.75 0.75 0.75

; VIEW COMMANDS

look-at 0 0 0

look-from 0 500 0

, LOAD FILE:

load 2-frames

set-collision-check 0

end

FILE: X-AXIS.DAT

clear

move x=- 100 y=0 z=0

draw x=100 y=0 z=0

draw x=100 y=0 z=5
store b

clear

move x=. 1 y=O z= 100

draw x=5 3,=0 z=100

draw x--. 1 y=0 z=l 10

rev-surface

rotate y=90
add b

store b

clear

-90-

Final Report: Development of ROBOSIM for Academic/industrial Use VanderbUt University

move x=123 y=O z=5

draw x=117 y=O z=-5

draw x=117 y=O z=-5.01

move x=123 y=O z=-5.01

draw x=117 y=O z=5

draw x=117 y=O z=5.01
add b

store-file x-axis

end

FILE: Y-AXIS.DAT

clear

move x =- 1O0 y=O z=O

draw x=lO0 y=O z=O

draw x=lO0 y=O z=5
store b

clear

move x =. 1 y=O z= 1O0

draw x=5 y=O z=lO0

draw x =. 1 y=O z= 110
rev-surface

rotate y=90
add b

rotate z=90

store b

clear

move x=O y=123 z=-5

draw x=O y=117 z=5

draw x=O y=117 z=5.01

move x=O y=120 z=O

draw x=O y=123 z=5

draw x=O y=123 z=5.01

add b

store-file y-axis

end

FILE: Z-AXIS.DAT

clear

move x=-lO0 y=O z=O

draw x=lO0 y=O z=O

draw x= 1O0 y=O z=5

store b

clear

-91 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt University

move x=.l y=O z=lO0

draw x--5 y=O z= 1O0

draw x=.l y=O z=110

rev-surface

rotate y=90

add b

rotate y=-90

store b

clear

move x=-3 y=0 z=120

draw x=3 y=0 z=120

draw x=-3 y=O z=130

draw x=3 y=0 z=130
add b

store-file z-axis

end

FILE: 2-FRAMES

make-robosim-object x-axis x-axis.dat x-axis red

make-robosim-object y-axis y-axis.dat y-axis white

make-robosim-object z-axis z-axis.dat z-axis blue

link-objects framel x-axis y-axis z-axis

make-robosim-object x-axis x-axis.dat x-axis red

make-robosim-object y-axis y-axis.dat y-axis white

make-robosim-object z-axis z-axis.dat z-axis blue

link-objects frame2 x-axis y-axis z-axis
exit

._ noeos_u

l

_0e,u_4

Figure E.2. Sample display for Example 2.

- 92 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

EXAMPLE 3: CONSTRUCTION OF ROBOT AND ASSIGNMENT OF LINKS

The objective of this example is to provide a brief tutorial on constructing a robot

and assigning the link joint frames. The reader is encouraged to print a copy of the

ARM.DAT file where a thorough discussion is given of the ROBOSIM modeler

commands for doing this.

In order to run this example, you must copy the ROBO386.EXE file from your

ROBOSIM root directory into this directory. You must also run the initiation batch file

INIT.BAT from the root directory to tell the simulator program where the FONTS and
DRIVERS directories are located.

To view the robot constructed in the ARM.DAT file type 'robo386' at the DOS

prompt. As explained in the ARM.DAT file comments, you may move the robot with the

'drive' command. For example,

robag>drive 2-axes-r 0 360 0 0 0 0

will rotate the second joint of the robot (called "2-axes-r") 360 degrees.

You may run the DEMO.CMD file by typing 'load demo.cmd' at the robag>

prompt. You may exit the simulator mode by typing 'exit' at the robag> prompt.

FILE: SETUP.CMD

SETUP.CMD

The simulation environment of ROBOSIM is an interactive

mode. The commands entered by the user are immediately

, executed and their results are printed or displayed on the

, screen. The simulator's code is contained in one executable

, file named 'robo386'. Typing 'robo386' at the shell prompt

, will invoke it. Upon startup the simulator initializes the

, graphics display and loads in initial commands from the

, file named 'setup.emd'. The 'setup.emd' file, as we will

construct here, normally contains as a minimum the color

definitions, the view commands, and reference to object

and/or robot agent files.

COLOR DEFINITIONS

define-color red 1.00 0.00 00.0

define-color green 0.00 1.00 0.00

- 93 -

Fhud Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt University

define-color blue 0.00 0.00 1.00

define-color black 0.00 0.00 0.00

define-color purple 1.00 0.00 1.00

define-color cyan 0.00 1.00 1.00

define-color yellow 1.00 1.00 0.00
define-color white 1.00 1.00 1.00

define-color rose 0.70 0.20 0.20

define-color gold 0.50 0.50 0.20

define-color It-grey 0.75 0.75 0.75

; VIEW COMMANDS

look-at 0 0 500

look-from 4000 0 500

, The following command is used to create a robot whose

, model has been pro-compiled using the ROBOSIM modeling

; commands. The agent-type is 'arm'. This is the 'arm.dat'

; file where the robot (agent) is modelled. The 'dat' suffix

; is not included in the agent-type specification. Here we

; have named the robot '2-axes-r'. The 2-axes robot '2-axes-r'

; can be moved about the environment with the 'translate-object'

; or 'rotate-object' commands. The two axes of the robot may

; be driven with the 'drive' command. The 'drive' command takes

; six joint angles. For our 2-axes robot, the last 4 joint

; angles are zero.

make-agent 2-axes-r arm green

make-object boxl box 100 100 I50 cyan

define-grasping-point boxl 0 0 0 0 0 0

translate-object boxl y=-550 z=75

make-object box?. box 100 100 150 yellow

define-grasping-point box2 0 0 0 0 0 0

translate-object box2 x=550 z-=75

make-object box3 box 100 100 150 white

define-grasping-point box3 0 0 0 0 0 0

translate-object box3 y-=550 z-=75

set-collision-check 0

end

FILE: ARM.DAT

, ARM.DAT

- 94 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

CONSTRUCTION OF TWO-AXIS MANIPULATOR ARM

INTRODUCTION:

Most common robots are composed of a series of rigid

components or links that are connected by rotary (revolute)

joints or sliding (prismatic) joints. The number of joints

(degrees-of-freedom) and their placement with respect to one

another greatly affect the volume (workspace) through which

the last link of the mechanism (end-effector) can be

translated and the directions along which the end-effector

may be oriented. Mechanisms with a form consisting of rigid
links connected end-to-end are called serial kinematic chains

and constitute the vast majority of robots in use today.

Other types of mechanisms, e.g., parallel linkages, consist

of linkage elements that are connected in parallel. Examples

of this type of mechanism are four bar linkages and six DOF

motion-base platforms similar to that used in cockpit flight

simulators. ROBOSIM at the present time does not support

experimentation with parallel linkages.

Modeling a serial linkage arm with ROBOSIM is

accomplished by using the geometric modeling commands to

develop a replica of each link of the robot mechanism from

geometric primitives. In addition to the shape of each link

the joint locations and types must be specified to establish

the connective relationships of adjacent links. The types of

joints that are permitted are: R-joints for revolute; P-joints

for prismatic; and F-joints for fixed joints. R-joints and

P-joints are used to specify the moveable joints while the

F-joint or fixed joint allows us to rigidly attach fixed parts

to a robot link element, e.g., the end-of-arm tooling. The

use of the F-joint type also allows us to regard all link

elements in the kinematic chain in a general way, thus each

link will have an input joint (I) and an output joint (I+1)

which may be either IL P, or F-type. When the arm is viewed

as a complete assembly, the output joint (I+1) on one link is

connected to the input joint (I) of the next link (moving

toward the end-effector). To be consistent, these common

joints located in adjacent links must be of the same type

whether 1L P, or F-type.

SET UP WORKCELL COORDINATE FRAMES:

The first dement of our robot system to be specified

is the workcell. The workcell is regarded the same logically

- 95 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt University

; as any link in the kinematic chain. The workceU reference

; frame is specified with a fixed joint type. To be consistent

; with links of the robot, two fixed joint types are used to

; specify the workceU frame. The fixed joints, F-JOINT-I and

; F-JOINT-I+I, used to specify the workceU frame may be located

; anywhere. Here both joints will be located at the origin.

; The first joint of the base link (10) will be aligned with the

; F-JOINT-I+I of the workcell. The workcell, with joints attached,

; must be stored as the first "link" of the robot system. It is

; always designated with a <.LOC> suffix.

f-joint-i

f-joint-i+l

store-link arm.loc

In the above commands, the F-JOINT-I command causes

ROBOSIM to define a fixed input joint at the current origin in

the A-register. This fixed joint or attach point is the first

in the series that will ultimately end at the robot's end-

effector tool center point (TCP). The F-JOINT-I+ 1 causes

ROBOSIM to define a fixed output joint superimposed on the

fixed input joint at the origin in A-register. It is not

• necessary that the fixed input and output joints of the workcell

, be superimposed; they are superimposed here for convenience.

, When the assembled robot is viewed in the simulation

, environment of ROBOSIM, the input joint of the robot's base

, link will be aligned with the output joint of the workcell.

The definition of the workcell is completed with the STORE-LINK

command. The argument <ARM.LOC> specifies that robot's name

is ARM, and the extension <.LOC> indicates that the information

specifies the workceU's geometry.

BASE LINK:

, The first joint &the base link will be aligned with the

, fixed joint, F-JOINT-I+ 1, of the workcell frame. The first

, joint of the base link should be a fixed joint to match the

, fixed I+l-joint of the workcell. The I+l-joint of the base

, link is the 1 st moveable joint of the manipulator. It must

• match the I-joint of the next link of the manipulator.

clear

cylinder r-_200 h=100
store b

clear

move x=200 y=0 z=50

- 96 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

draw x=100 y=0 z=400

rev-surface

add b

store b

clear

cylinder r=100 h=100

translate x=0 y=0 z=450

add b

store b

clear

f-joint-i

translate x=0 y=0 z=-50
add b

store b

clear

r-joint-i+l

translate x=0 y=0 z=500
add b

store-link arm.10

; FIRST LINK:

clear

cylinder r=100 h=100
store b

clear

move x=50 y=0 z=0

draw x=50 y=100 z=0

draw x=25 y=125 z=0

draw x=-25 y=125 z=0

draw x=-50 y=100 z=0

draw x=-50 y=0 z=0

draw x=50 y=0 z=0
extrude-surface z=600

rotate x=90

rotate z=90

translate x=200 y=0 z=50
add b

store b

clear

r-joint-i

rotate z=90

translate x=O y=0 z=-50
add b

store b

- 97 -

Final Report: Development of ROBOSIM for Acadenflc/lndumtrial Use Vanderbilt University

clear

r=joint-i+I

rotate y=90
rotate x=90

translate x=500 y=O z=100

add b

store-link arm.ll

, SECOND LINK:

clear

move x=50 y=0 z=O

draw x=50 y=100 z=0

draw x=25 y=125 z=0

draw x=-25 31=125 z=0

draw x=-50 y=100 z=0

draw x=-50 y=0 z=0

draw x=50 y=0 z=0
extrude-surface z=100

store b

clear

box x=lO0 y=500 z=lO0

translate x=O y=-250 z=O
add b

store b

clear

r-joint-i
rotate x = 180

rotate z=180

translate x=O y=50 z=50
add b

store b

clear

r-joint-i+l

translate x=O 3,=50 z=O
add b

store-link arm.12

end

FILE: DEMO.CMD

minimal-step 1
drive 2-axes-r 360 0 0 0 0 0

minimal-step 10

grasp 2-axes-r boxl

- 98 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VMderbiit University

drive 2-axes-r 0 55 0 0 0 0

drive 2-axes-r 135 55 0 0 0 0

drive 2-axes-r 135 0 0 0 0 0

release 2-axes-r boxl

drive 2-axes-r 180 0 0 0 0 0

grasp 2-axes-r box3
drive 2-axes-r 180 -55 0 0 0 0

drive 2-axes-r 45 -55 0 0 0 0

drive 2-axes-r 45 0 0 0 0 0

release 2-axes-r box3

drive 2-axes-r 90 0 0 0 0 0

grasp 2-axes-r box2
drive 2-axes-r 90 55 0 0 0 0

drive 2-axes-r 225 55 0 0 0 0

drive 2-axes-r 225 0 0 0 0 0

release 2-axes-r box2

drive 2-axes-r 45 0 0 0 0 0

grasp 2-axes-r box3
drive 2-axes-r 45 55 0 0 0 0

drive 2-axes-r 180 55 0 0 0 0

drive 2-axes-r 180 0 0 0 0 0

release 2-axes-r box3

drive 2-axes-r 225 0 0 0 0 0

grasp 2-axes-r box2

drive 2-axes-r 225 -55 0 0 0 0

drive 2-axes-r 90 -55 0 0 0 0

drive 2-axes-r 90 0 0 0 0 0

release 2-axes-r box2

drive 2-axes-r 135 0 0 0 0 0

grasp 2-axes-r boxl

drive 2-axes-r 135 55 0 0 0 0

drive 2-axes-r 270 55 0 0 0 0

drive 2-axes-r 270 0 0 0 0 0

release 2-axes-r box 1

drive 2-axes-r 90 0 0 0 0 0

grasp 2-axes-r box2

drive 2-axes-r 90 55 0 0 0 0

drive 2-axes-r 225 55 0 0 0 0

drive 2-axes-r 225 0 0 0 0 0

release 2-axes-r box2

drive 2-axes-r 270 0 0 0 0 0

grasp 2-axes-r boxl
drive 2-axes-r 270 -55 0 0 0 0

drive 2-axes-r 135 -55 0 0 0 0

drive 2-axes-r 135 0 0 0 0 0

- 99 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

release 2-axes-r boxl

drive 2-axes-r 180 0 0 0 0 0

grasp 2-axes-r box3
drive 2-axes-r 180 55 0 0 0 0

drive 2-axes-r 315 55 0 0 0 0

drive 2-axes-r 315 0 0 0 0 0

release 2-axes-r box3

drive 2-axes-r 135 0 0 0 0 0

grasp 2-axes-r boxl
drive 2-axes-r 135 55 0 0 0 0

drive 2-axes-r 270 55 0 0 0 0

drive 2-axes-r 270 0 0 0 0 0

release 2-axes-r boxl

drive 2-axes-r 315 0 0 0 0 0

grasp 2-axes-r box3

drive 2-axes-r 315 -55 0 0 0 0

drive 2-axes-r 180 -55 0 0 0 0

drive 2-axes-r 180 0 0 0 0 0

release 2-axes-r box3

drive 2-axes-r 225 0 0 0 0 0

grasp 2-axes-r box2
drive 2-axes-r 225 55 0 0 0 0

drive 2-axes-r 0 55 0 0 0 0

drive 2-axes-r 0 0 0 0 0 0

release 2-axes-r box2

minimal-step 1

drive 2-axes-r 360 0 0 0 0 0

end

ROBOSlM

HULIdG

J_86RG)dx'xve 2-exw-r 13S 0 0 0 0 0

Figure E.3. Sample display for Example 3.

- 100-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

EXAMPLE 4: ROBOT REMOVAL/INSERTION OF MODULE

This example demonstrates a robot removing and inserting a module in

different configurations of the arm. To run the program you should first copy the
ROBO386.EXE file from your ROBOSIM root directory to this directory. You will also

need to execute the initiation batch file INIT.BAT so that the program will know the path

to the FONTS and DRIVERS directories.

To run the demonstration, type 'robo386' at the DOS prompt, and then 'load
demo.cmd' at the simulator's robag> prompt. The program will execute the removal and

insertion routines on both sides of the robot in the elbow-up and elbow-down

configurations. When the demo is completed the program will return to the simulator's

robag> prompt.

You can observe the system's collision detection and avoidance heuristics by

lowering the top object to cause a collision. To do this type 'translate-object top z=-250'

at the robag> prompt. Now when you run the program by typing 'load demo.cmd', a
collision will be detected in attempting to perform part of the routines on the right hand

side of the display. Once a collision is detected, the heuristics will search for a collision-

free path. When a complete collision-free path is found, the robot will return quickly to

the start position and then execute the complete collision-free path that has been
determined.

To exit the simulator mode type 'exit' at the robag> prompt.

FILE: SETUP.CMD

define-color red 1 0 0

define-color green 0 1 0
define-color blue 0 0 1

define-color black 0 0 0

define-color purple 1 0 1

define-color cyan 0 1 1
define-color yellow 1 1 0
define-color white 1 1 1

look-at 0 0 700

look-from 0 5000 1000

make-agent r puma560 red

make-object floor box 2000 2000 60 green

translate-object floor z=-31

make-object xx box 200 10 100 blue

define-grasping-point xx -180 0 0 -90 0 -90

translate-object xx x=900 y=300 z=800

make-object top cylinder 200 10 blue

- 101 -

Fired Report: Development of ROBOSIM for Academic/Industrial Use Vanderbiit University

translate-object top z=1650

set-collision-check 1

end

FILE: DEMO.CMD

set-echo 1

set-solution r 0

load moveback.cmd

load moveforw.cmd

set-solution r 3

load moveback.cmd

load moveforw.cmd

rotate-object xx z=180

translate-object xx x=200
set-solution r 4

load moveforw.cmd

load moveback.cmd

set-solution r 7

load moveforw.cmd

load moveback.cmd

translate-object top z=-250
set-solution r 7

load moveforw.cmd

drive r 0 0 0 0 0 1O0

end

FILE: MOVEFORW.CMD

move-to-grasp r xx

get-solution r

grasp r xx

translate-agent r x---200
translate-agent r y=600

translate-agent r x=200
release r xx

drive-find r 0 0 0 0 0 0

end

FILE: MOVEBACK.CMD

move-to-grasp r xx

get-solution r

grasp r xx

translate-agent r x=-200

- 102-

Final Report: Development of ROBOSIM for Academic[Industrial Use Vanderblit University

translate-agent r y=-600

translate-agent r x=200

release r xx

drive-find r 0 0 0 0 0 0

end

FILE: PUMA560.DAT

ECHO OFF
.________

•* VANDERBILT UNIVERSITY

;* 1, AUG 1988

;* MODELLING THE PUMA-560

;* SALEH ZEIN

;* Modified by Csaba Biegl for Boeing

I*

SET-NFACE N=25.0
**
_t

; SET UP CELL COORDINATE FRAMES
**
9

CLEAR

F-JOINT-I

F-JOINT-I+ 1

STORE-LINK PUMA560.LOC

t

; BASE LINK-LO
**
_t

CLEAR

ADD B

ADD C

CYLINDER R=g8.90,H=533.40

TRANSLATE X=O.OO,Y=O.OO,Z=328.93

STORE B

CLEAR

CYLINDER R=177.80,H=25.40

TRANSLATE X=0.00,Y=0.00,Z=49.53

ADD B

STORE B

CLEAR

CYLINDER R=203.20,H=36.83

TRANSLATE X=0.00,Y=0.00,Z=I 8.41
F-JOINT-I

ADD B

STORE B

CLEAR

- 103 -

Fired Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

CYLINDER R=38.10,H = 152.40

TRANSLATE X=0.00,Y=0.00,Z=127.00

BOX X=127.00,Y=101.60,Z=101.60

TRANSLATE X=0.00,Y =- 152.40,Z=50.80

ADD B

STORE B

CLEAR

R-JOINT-I+I

TRANSLATE X--0.00,Y=0.00,Z=671.83

ADD B

STORE-LINK PUMA560.L0

; FIRST LINK-L1

:P

CLEAR

STORE B

CYLINDER R=88.90,H=25.40

TRANSLATE X=0.00,Y=0.00,Z=25.40

CYLINDER R=76.20,H=25.40

TRANSLATE X=0.00,Y=0.00,Z=116.84
STORE B

CLEAR

CYLINDER R=68.S0,H=232.68

TRANSLATE X=0.00,Y=0.00,Z=-I 5.0

ADD B

TRANSLATE X=0.00,Y=0.00,Z=32.64

STORE B

CLEAR

R-JOINT-I+I

ADD B

STORE B

CLEAR

R-JOINT-I

ROTATE X=90.

ADD B

STORE-LINK PUMA560.L1

; SECOND LINK-L2

CLEAR

STORE B

STORE C

MOVE X=0.00,Y=-228.60,Z=0.00

DRAW X=0.00,Y=-226.82,Z=-31.75

DRAW X=0.00,Y=-216.66,Z=-83.82

- 104 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt University

DRAW X=0.00,Y=-200.66,Z=- 127.00

DRAW X=0.00,Y=50.80,Z=-127.00

DRAW X=0.00,Y=431.80,Z=-76.20

DRAW X=0.00,Y=451.61 ,Z=-73.66

DRAW X=0.00,Y=469.90,Z=-66.04

DRAW X=0.00,Y=485.65,Z=-53.85

DRAW X=0.00,Y=497.84,Z=-38.10

DRAW X=0.00,Y=505.46,Z=-I 9.81

DRAW X=0.00,Y=508.00,Z=0.00

DRAW X--0.00,Y=505.46,Z= 19.81

DRAW X=0.00,Y=497.84,Z=38.10

DRAW X=0.00,Y=485.65,Z=53.85

DRAW X--0.00,Y=469.90,Z=66.04

DRAW X=0.00,Y=451.61,Z=73.66

DRAW X=0.00,Y=431.80,Z=76.20

DRAW X=0.00,Y=50.80,Z= 127.00

DRAW X=0.00,Y=-200.66,Z= 127.00

DRAW X=0.00,Y=-216.66,Z=83.82

DRAW X=0.00,Y=-226.82,Z=31.75

DRAW X=0.00,Y=-228.60,Z=0.00
ROTATE Y=90.

EXTRUDE-SURFACE Z=I 01.60

ROTATE Z=-90.

TRANSLATE X=0.00,Y=0.00,Z=243.08
STORE C

CLEAR

R-JOINT-I

ADD C

STORE C

CLEAR

R-JOINT-I+ 1

ROTATE Z=- 180.

TRANSLATE X=431.80,Y=0.00,Z= 149.10
ADD C

STORE-LINK PUMA560.L2
.________

; LINK-L3

CLEAR

STORE B

STORE C

MOVE X=0.00,Y=-127.00,Z=0.00

DRAW X--0.00,Y=-124.97,Z=-22.10

DRAW X=0.00,Y=- 122.68,Z=-32.77

DRAW X=0.00,Y=-I 19.38,Z=-43.43

- 105 -

Final Report: Development of ROBOSIM for Acadenflc/InduJtrlal Use Vanderbilt University

DRAW X=0.00,Y=-113.54,Z=-57.15

; DRAW X=0.00,Y=350.52,Z=-44.45

; DRAW X=0.00,Y=350.52,Z=0.00

; DRAW X=0.00,Y=350.52,Z=44.45

DRAW X=0.00,Y=350.52,Z=- 14.45

DRAW X=0.00,Y=350.52,Z=30.00

DRAW X=0.00,Y=350.52,Z=74.45

DRAW X=0.00,Y=-113.54,Z=57.15

DRAW X=0.00,Y=-119.38,Z=43.43

DRAW X=0.00,Y=- 122.68,Z=32.77

DRAW X=0.00,Y=-124.97,Z=22.10

DRAW X=0.00,Y=-127.00,Z=0.00

TRANSLATE X=0.00,Y=0.00,Z=-30.00

ROTATE Y=90.

EXTRUDE-SURFACE Z=88.90

STORE C

CLEAR

R-JOINT-I+I

ROTATE X=-90.

TRANSLATE X=0.00,Y=433.07,Z=0.00

ADD C

STORE C

CLEAR

R-JOINT-I

TRANSLATE X=-20.32,Y=0.00,Z=0.00

ADD C

STORE-LINK PUMA560.L3

; LINK-L4 WRIST ROTATION

CLEAR

STORE B

STORE C

BOX X=88.90,Y=88.90,Z=6.35

TRANSLATE X=0.00,Y=0.00,Z=I 5.88

BOX X=$8.90,Y=88.90,Z=25.40

TRANSLATE X=0.00,Y=0.00,Z=I 9.05

BOX X=88.90,Y=gg.90,Z= 12.70

TRANSLATE X=0.00,Y=0.00,Z=6.35

STORE B

CLEAR

CYLINDER R=40.64,H=30.48
ROTATE X=90.

TRANSLATE X=0.00,Y=29.21,Z=85.09
STORE C

- 1o6-

Fired Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt Unlver*ity

ADD B

STORE B

CLEAR

LOAD C

TRANSLATE X=0.00,Y=-58.42,Z=0.00

ADD B

TRANSLATE X=0.00,Y=0.00,Z=-85.09

STORE B

CLEAR

R-JOINT-I

ADD B

STORE B

CLEAR

R-JOINT-I+ 1

ROTATE X=90.

ADD B

STORE-LINK PUMA560.L4

, LINK-L5

CLEAR

STORE B

CYLINDER R=40.64,H=25.40

R-IOINT-I

STORE B

CLEAR

CYLINDER R=25.40,H=5.08

TRANSLATE X=0.00,Y--0.00,Z=7.62

CYLINDER R=12.70,H=I 0.16

TRANSLATE X=0.00,Y=0.00,Z=5.08

ROTATE X=-90.

TRANSLATE X=0.00,Y=40.64,Z=0.00

ADD B

STORE B

CLEAR

R-JOINT-I+I

ROTATE X=-90.

TRANSLATE X=0.00,Y=55.88,Z=0.00

ADD B

STORE-LINK PUMA560.L5

P

; LINK-L6

CLEAR

STORE B

- 107 -

Fhud Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt University

F-JOINT-I+I

STORE B

CLEAR

R-JOINT-I

ADD B

STORE-LINK PUMA560.L6

; create the object as a fixed joint

CLEAR

F-JOINT-I

F-JOINT-I+I

STORE-LINK PUMA560.L7

END

FILE: PUMA560.KIN

;; Auxilary kinematics information for the PUMA 560 robot
..

LINK PARAMETERS

This command can be used to overwrite the ROBOSIM-generated

link parameters in the model atter loading. It is necessary

because ROBOSIM does not follow the Denavit-Hartenberg

convention. We don't use it here, since the built-in

PUMA inverse kinematics routine has been modified to

accept ROBOSIM's conventions.

JOINT THETA DZ DA ALPHA

; linkparam 1 0.0 0.0 0.0 -90.0

,linkparam 2 0.0 149.5 432.0 0.0

, linkparam 3 0.0 0.0 20.3 90.0

, linkparam 4 0.0 432.0 0.0 -90.0

, linkparam 5 0.0 0.0 0.0 90.0

linkparam 6 0.0 56.5 0.0 0.0

; JOINT LIMITS

jointlimit

jointlimit

jointlimit

jointlimit

jointlimit

JOINT MIN MAX

1 -160.0 160.0

2 -225.0 45.0

3 -45.0 225.0

4 -110.0 170.0

5 -100.0 100.0

- 108-

Fhud Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt Unlver_ity

jointlimit 6 -266.0 266.0

; ANALYTICAL INVERSE KINEMATICS SOLUTION

invertfunc puma560_inv

_j ROBOS,M I_1_i

ROBAG I_

Figure E.4. Sample display for Example 4.

EXAMPLE 5: CONSTRUCTION OF 3-REVOLUTE JOINT ROBOT

This example shows the construction of a 3-revolute joint robot and demonstrates

it stacking blocks.

The reader is encouraged to study the 3R-ROBOT.DAT, SETUP.CMD, and

DEMO.CMD files for examples of constructing a robot, assigning link joint frames, and

performing tasks with the robot. To view the robot and demo, you must first copy the

ROBO386.EXE file from your DOS root directory to this directory. You must also first

run the initiation batch file INIT.BAT from the root directory to tell the simulator program
where the FONTS and DRIVERS directories are located.

To view the robot constructed in the 3R-ROBOT.DAT file, type 'robo386' at the

DOS prompt. To run the demo, type 'load demo.cmd' at the robag> prompt. When the

demo is completed, you may exit the simulator mode by typing 'exit' at the robag> prompt.

The robot in this example is called "3r". You may operate it from the interactive

window of the simulator by use of the 'drive' command. For example,

- 109-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

robag>drive 3r 90 0 0 0 0 0

will rotate the first joint by 90 degrees. Even though this robot only has 3 joint, all six

arguments of the drive command must be specified. The last three, of course, have not
effect on this robot.

FILE: SETUP.CMD

define-color

define-color

define-color

define-color

define-color

define-color

define-color

define-color

define-color

define-color

SETUP.CMD

COLOR DEFINITIONS

red 1.00 0.00 00.0

green 0.00 1.00 0.00
blue 0.00 0.00 1.00

black 0.00 0.00 0.00

purple 1.00 0.00 1.00

cyan 0.00 1.00 1.00

yellow 1.00 1.00 0.00
white 1.00 1.00 1.00

rose 0.70 0.20 0.20

gold 0.50 0.50 0.20

define-color It-grey 0.75 0.75 0.75

; VIEW COMMANDS

look-at 0 0 750

look-from 0 4000 750

; HOME POSITION VECTOR

load-positions h

; CREATE ROBOT

make-agent 3r 3r-robot cyan

; ***

; CREATE BLOCKS TO BE MOVED AND STACKED BY ROBOT

make-object boxl box 600 150 100 red

define-grasping-point box1 0 0 0 0 0 0

translate-object boxl x=-3000

make-object box2 box 600 150 100 white

define-grasping-point box2 0 0 0 0 0 0

- 110-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

translate-object box2 x---3000

make-object box3 box 600 150 100 blue

define-grasping-point box3 0 0 0 0 0 0

translate-object box3 x=-3000

make-object box4 box 600 150 100 yellow

define-grasping-point box4 0 0 0 0 0 0

translate-object box4 x=-3000

make-object box5 box 600 150 100 green

define-grasping-point box5 0 0 0 0 0 0

translate-object box5 x=-3000

make-object box6 box 600 150 100 cyan

define-grasping-point box6 0 0 0 0 0 0

translate-object box6 x=-3000

make-object box7 box 600 150 100 purple

define-grasping-point box7 0 0 0 0 0 0

translate-object box7 x=-3000

make-object box8 box 600 150 100 white

define-grasping-point box8 0 0 0 0 0 0

translate-object box8 x=-3000

make-object box9 box 600 150 100 blue

define-grasping-point box9 0 0 0 0 0 0

translate-object box9 x=-3000

make-object boxl0 box 600 150 100 red

define-grasping-point boxl0 0 0 0 0 0 0

translate-object box/0 x=-3000

set-collision-check 0

end

FILE: 3R-ROBOT.DAT

; 3R-ROBOT.DAT

; MODELING OF ROBOT WITH 3 REVOLUTE JOINTS

; WORKCELL COORDINATE FRAMES

____.___

f-joint-i

f-joint-i+l

store-link 3r.loc

; BASE LINK

, ***

clear

cylinder r=185 h=50

-111-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

store b

clear

cylinder r=40 h=100

translate x=125 y=0 z=75

add b

store b

clear

cylinder r=75 h=250

translate x=0 y=0 z=150
add b

store b

clear

f-joint-i

translate x=O y=0 z=-25

add b

store b

clear

r-joint-i+l

translate x=O y=O z=275
add b

store b

store-link 3r.lO

; FIRST LINK

clear

cylinder r=75 h=500

store b

clear

r-joint-i

translate x=O y=O z=-250
add b

store b

clear

r-joint-i+l

rotate x=90

translate x---O y=O z=200
add b

store b

store-link 3r.ll

; SECOND LINK

; ***

clear

move x=150 y=O z=O

- 112-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

draw x=150 y=-80 z=O

draw x=350 y=-80 z=O

draw x=350 y=-125 z=O

draw x=-350 y=-125 z=O

draw x=-350 y=-80 z=O

draw x=-150 y=-80 z=O

draw x=-150 y-=80 z=O

draw x=-350 y=80 z=O

draw x=-350 y=125 z=O

draw x=350 y=125 z=O

draw x=350 y=80 z--O

draw x=lSO y=80 z=O

draw x=150 y=O z=O
extrude-surface z=l O0

store b

clear

cylinder I"=40 h=l O0

rotate x=90

translate x=250 y=-175 z=O
add b

store b

clear

cylinder r=40 h=l O0
rotate x=90

translate x=-250 y=-175 z=0

add b

store b

clear

r-joint-i

rotate x=90

translate x---250 y=0 z=0
add b

store b

clear

r-joint-i+l

rotate x=90

translate x=-250 y=0 z=0
add b

store-link 3r.12

; TH/RD LINK

clear

box x=400 y=150 z=100
store b

- 113 -

Final Report: Development of ROBOSIM for Acadenflc/Industrlal Use Vanderbiit University

clear

r-joint-i

rotate x=90

translate x=125 y=O z=O
add b

store b

clear

r-joint-i+l
rotate x=90

translate x=-125 y=O z=O
add b

store-link 3r.13

end

FILE: H (HOME POSITION VECTOR)

h 0.00 0.00 0.00 0.00 0.00 0.00

FILE: DEMO.CMD

set-echo 1

minimal-step 6

translate-object

grasp 3r boxl
drive 3r 180 65

release 3r boxl

drive 3r 180 70

drive 3r h

translate-object

grasp 3r box2
drive 3r 180 45

release 3r box2

drive 3r 180 50

drive 3r h

translate-object

grasp 3r box3
drive 3r 180 30

release 3r box3

drive 3r 180 35

drive 3r h

translate-object

grasp 3r box4
drive 3r 180 17

release 3r box4

drive 3r 180 22

boxl x=1875 z=750

-65000

-80000

box2x=1875 _750

-45000

-60000

box3 x=1875_750

-30000

-45000

box4x=1875_750

-17000

-32000

- 114-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

drive 3r h

translate-object box5 x=1875 z=750

grasp 3r box5
drive 3r 180 5 -5 0 0 0

release 3r box5

drive 3r 180 10 -20 0 0 0

drive 3r h

translate-object box6 x=1875 z=750

grasp 3r box6
drive 3r 180 -7 7 0 0 0

release 3r box6

drive 3r 180 -2 -8 0 0 0

drive 3r h

translate-object box7 x=1875 z=750

grasp 3r box7

drive 3r 180 -18.5 18.5 0 0 0

release 3r box7

drive 3r 180 -13.5 3.5 0 0 0

drive 3r h

translate-object box8 x=1875 z=750

grasp 3r box8
drive 3r 180 -31 31 0 0 0

release 3r box8

drive 3r 180 -41 41 0 0 0

drive 3r h

translate-object box9 x=1875 z=750

grasp 3r box9
drive 3r 180 -46 46 0 0 0

release 3r box9

drive 3r 180 -56 56 0 0 0

drive 3r h

translate-object boxlO x=1875 z=750

grasp 3r boxlO

drive 3r 180 -67 67 0 0 0

release 3r boxl 0

drive 3r 180 -77 77 0 0 0

drive 3r h

end

- 115-

Final Report: Development of ROBOSIM for Acadendc/lndustrlal Use Vanderbilt University

ROEIOSIM

RO_AG

ROBkRG>d:rive 3r 180 -77 77 I) 0 0
ROB,tRG>

Figure E.5. Sample display (number 1) for Example 5.

N ROBOSiM _

RO[]AG Ij_

=t=!

Figure E.6. Sample display (number 2) for Example 5.

EXAMPLE 6: 6-AXIS OVERHEAD ROBOT

This example demonstrates a 6-axis overhead robot used for displaying

information about ROBOSIM. To run the program, first copy the ROBO386.EXE file

from your ROBOSIM root directory to this directory. You will also need to run the

IN'IT.BAT 61e from your root directory to tell the simulation program where the FONTS

and DRIVERS directories are located. A__er performing these steps, the program may be

run by typing robo386 at the DOS prompt. Then the command file, DEMO.CMD, can be

- 116-

Final Report: Development of ROBOSIM for Acadendc/lndustrial Use Vsmderldlt Unlverslly

loaded and run by typing 'load demo.cmd' at the robag> prompt. The overhead robot is

named "hr". It may be moved with commands entered from the interactive window by use

of the 'drive' command. The first joint is prismatic, the other five joints are revolute. The

simulation program may be exited by typing 'exit' at the robag> prompt. You may wish to

print out a listing of the HANG-ROB.DAT file to see how the robot is constructed and

how the link joints are assigned.

FILE: SETUP.CMD

; SETUP.CMD

; COLOR DEFINITIONS

define-color red 1.00 0.00 00.0

define-color green 0.00 1.00 0.00
define-color blue 0.00 0.00 1.00

define-color black 0.00 0.00 0.00

define-color purple 1.00 0.00 1.00

define-color eyan 0.00 1.00 1.00

define-color yellow 1.00 1.00 0.00

define-color white 1.00 1.00 1.00

define-color rose 0.70 0.20 0.20

define-color gold 0.50 0.50 0.20

define-color It-grey 0.75 0.75 0.75

; VIEW COMMANDS

look-at 0 0 0

look-from 0 10000 0

; OVERHEAD (HANGING) ROBOT - HR.

make-agent hr hang-rob cyan

translate-object hr y=-1000 z=2500

; ROBOSIM

make-robosim-object robosim robosim.dat robosim yellow

translate-object robosim x=-100 z=10800

define-grasping-point robosim 0 0 0 0 0 0

; FORMATION OF CHARACTER BLOCK: USED FOR MODELING OF

make-robosim-object usesl usesl .dat usesl white

- 117-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

translate-object uses 1 x=-700 z=10300

; FORMATION OF CHARACTER BLOCK: ROBOTS/POSITIONERS AND

make-robosim-object uses2 uses2.dat uses2 white

translate-object uses2 x=-500 z=-10200

; FORMATION OF CHARACTER BLOCK: OBJECTS IN WORKSPACE

; ***

make-robosim-object uses3 uses3.dat uses3 white

translate-object uses3 x=-800 z=- 10700

; FORMATION OF CHARACTER BLOCK: AND FOR SIMULATION OF

make-robosim-object uses4 uses4.dat uses4 white

translate-object uses4 x=-700 z=-11200

; ***

; FORMATION OF CHARACTER BLOCK: ACTION SEQUENCES

, ***

make-robosim-object uses5 uses5.dat uses5 white

translate-object uses5 x =- 1300 z =- 11700

; FORMATION OF CHARACTER BLOCK: PERFORMED BY ROBOTS

make-robosim-object uses6 uses6.dat uses6 white

translate-object uses6 x=-900 z=-12200

; COMBINE INTO ONE COMPOSITE OBJECT

set-collision-check 0

end

FILE: HANG-ROB.DAT

, HANG-ROB.DAT

, MODELING AN OVERHEAD ROBOT

, WORKCELL COORDINATE FRAMES

set-nface n = 10

clear

f-joint-i

store b

clear

- 118-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt Unlvet_ity

f-joint-i+ 1
rotate z=90

add b

store-link hr.loc

; BASE LINK

clear

box x=7800 y=400 z=200
store b

clear

f-joint-i
rotate z=90

add b

store b

clear

p-joint-i+l

rotate y=90
rotate x=90

translate x=0 y=0 z=-100
add b

store-link hr.10

; FIRST LINK

clear

box x=800 y=400 z=200
store b

clear

cylinder r=50 h=200

rotate y=90

translate x=500 y=0 z=0
add b

store b

clear

cylinder r=200 h=200

translate x--0 y=0 z=-200
add b

store b

clear

p-joint-i

rotate y=90
rotate x=90

translate x=0 y=0 z=100
add b

- 119-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

store b

clear

r-joint-i+l
rotate x =180

rotate z=90

translate x=0 y=0 z=-300

add b

store-link hr.l 1

; SECOND LINK

clear

cylinder r=200 h=200
store b

clear

box x=300 y=200 z=25

translate x=0 y=0 z=- 112.5

add b

store b

clear

box x=25 y=200 z=200

translate x=137.5 y=0 z=-225
add b

store b

clear

box x=25 y=200 z=200

translate x=-137.5 y=0 z=-225
add b

store b

clear

cylinder r=50 h=200

rotate y=90

translate x=250 y=0 z=-275
add b

store b

clear

r-joint-i

rotate x=180

rotate z=90

translate x=0 y=0 z=100
add b

store b

clear

r-joint-i+l
rotate x=90

- 120 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

rotate z=90

translate x=0 y=0 z=-275
add b

store-link hr.12

; THIRD LINK

clear

box x=800 y=200 z=200
store b

clear

cylinder r=l O0 h=200

translate x=-500 y=O z=O
add b

store b

clear

cylinder r=50 h=200

translate x=-500 y=0 z=200

add b

store b

clear

r-joint-i

translate x=350 y=O z=O

add b

store b

clear

r-joint-i+l

translate x=-500 y=O z=O
add b

store-link hr.13

, FOURTH LINK

clear

box x=lO00 y=lO0 z=lO0
store b

clear

cylinder r=50 h=lO0

rotate y=90

translate x=-550 y=O z=O

add b

store b

clear

r-joint-i

rotate z=90

- 121 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbiit University

translate x=600 y=0 z=0

add b

store b

clear

r-joint-i+l

rotate y=-90
rotate x=-90

translate x=-600 y=O z=O
add b

store-link hr.14

; FIFTH LINK

clear

cylinder r=50 h=100
store b

clear

cylinder r=50 h=200

rotate y=90

;rotate z=90

translate x=0 y=0 z=-100
add b

store b

clear

r-joint-i

rotate x= 180

rotate z=90

translate x=0 y=0 z=50
add b

store b

clear

r-joint-i+l

rotate y=90
rotate x=90

translate x=0 y=0 z=-100
add b

store-link hr.15

; SIXTH LINK

clear

cylinder r=50 h=50
store b

clear

cylinder r= 10 h=400

- 122 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

translate x=O y=O z=-225

add b

store b

clear

r-joint-i

rotate x=90

translate x=O y=O z=75
add b

store b

clear

r-joint-i+1
rotate x=90

translate x=O y=O z=- 1O0

add b

store-link hr.16

end

FILE: DEMO.CMD

minimal-step 100
drive hr 3200 0 90 135 0 45

drive hr -2750 167 150 -45 0 0

drive hr 3225 167 150 -45 0 0

make-object box2 box 6000 10 3000 green

translate-object box2 z=-800
drive hr 1325 116 18 68 0 -45

drive hr 3200 116 18 68 0 -45

make-object boxl box 1900 10 400 purple

translate-object boxl z=950
drive hr 2000 90 -20 130 0 75

make-robosim-object nasavu nasavu.dat nasavu red

translate-object nasavu x=-1700 y=-3000 z=2300

drive hr 3200 116 18 68 0 -45

translate-object robosim z=-10000

minimal-step 2

drive hr 3225 167 150 -45 0 0

translate-object usesl z =- 10000

translate-object uses2 z=10000

translate-object uses3 z=10000

translate-object uses4 z =10000

translate-object uses5 z=lO000

translate-object uses6 z=10000

drive hr 3200 90 -10 100 0 -90

minimal-step 100
drive hr 1975 117 -4 94 0 -90

- 123 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vuderbilt University

make-agent t3-mm t3-mm cyan

translate-object t3-mm z=10000

minimal-step 4
drive t3-mm 0 0 0 0 0 1500

link-objects uses robosim usesl uses2 uses3 uses4 uses5 uses6 boxl box2

define-grasping-point uses 0 0 0 0 0 0

grasp hr uses

drive hr 1975 -90 -4 94 0 0

release hr uses

minimal-step 100

drive hr 3200 0 90 90 0 0

make-robosim-object please please.dat please white

translate-object please x=- 1500

make-robosim-object for-next for-next.dat for-next white

translate-object for-next x=-1600 z=-500

minimal-step 4

drive t3-mm 0 0 0 0 0 1000

end

noaos,M _E

NA,_VANDERBILT

USEDFORI,IOOELI_ OF'
ROBOTS/POSfflONERSAND

OBJECTSIN WORKSPACE
ANDFOIl$_ULATIONOF

ACTXOH8EQUEh'CE$
PERFO]ilEDBYROBOTS

ROBAG

K_)BARG>load d_.mo, cmd
ROBiRG >

Figure E.7. Sample display (number 1) for Example 6.

- 124 -

FinalReport:DevelopmentofROBOSIMforAcademic/IndustrialUse VanderblltUnlvemity

ROBOSIM

NASANAJ_ U.T

;)driv_ hr 1975 65 -4 94 0 -5S
hr 1975 60 -4 94 0 -55

Figure E.8. Sample display (number 2) for Example 6.

EXAMPLE 7: WATERBLAST REFURBISHMENT OF SRB COMPONENT

This example demonstrates the use of a Cincinnati Milacron T3 robot in the

waterblast refurbishment of a solid rocket booster component at NASA's Marshall Space

Flight Center. To run the program, first copy the ROBO386.EXE file from your

ROBOSIM root directory. Also, you must run the INIT.BAT file from your root

directory in order that the simulator program will know the path to the FONTS and

DRIVERS directories. Following these two steps, type 'robo386' at the DOS prompt to

enter the simulator. Then, at the robag> prompt, type 'load demo.cmd' to run the

demonstration. When the demonstration is completed, the simulator may be exited by

typing 'exit' at the robag> prompt. You may wish to print out a copy of the T3-MM.DAT

file to see how the T3 robot is constructed and how the link joints are assigned.

FILE: SETUP.CMD

; SETUP.CMD

; COLOR DEFINITIONS

define-color red 1.00 0.00 00.0

define-color green 0.00 1.00 0.00

define-color blue 0.00 0.00 1.00

define-color black 0.00 0.00 0.00

- 125 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

define-color purple 1.00 0.00 1.00

define-color cyan 0.00 1.00 1.00

define-color yellow 1.00 1.00 0.00
define-color white 1.00 1.00 1.00

define-color rose 0.70 0.20 0.20

define-color gold 0.50 0.50 0.20

define-color It-grey 0.6 0.6 0.6

; VIEW COMMANDS

look-at 0 0 1300

look-from 0 10000 1300

; WATERBLAST REFURBISHMENT OF SRB - TITLE

make-robosim-object srb-titl srb-titl.dat srb-titl white

translate-object srb-titl x=2000 z=3450

; NASA/VANDERBILT LOGO

make-robosim-object nasavu nasavu3.dat nasavu red

translate-object nasavu x=- 1650 z=-1000

; ROBOSIM LOGO

make-robosim-object robosim robosim3.dat robosim yellow

translate-object robosim x=-2300 z=-650

; HOME POSITION VECTOR

; ***

load-positions pos

; T3 ROBOT

make-agent t3 t3-mm cyan

translate-object t3 x=-6300 z=200

minimal-step 100
drive t3 home

translate-object t3 x---4000

; STAND FOR ROBOT

make-robosim-object stand stand.dat stand It-grey

translate-object stand x=-2300 z=-200

- 126 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

; TURN TABLE AND SRB COMPONENT

make-agent t-table t-table It-grey

make-robosim-object srb srb.dat srb green

define-grasping-point srb 0 0 0 0 0 0

grasp t-table srb

translate-object t-table x--1500 z=-200

; WATER JET

make-robosim-object jet jet.dat jet blue

define-grasping-point jet 0 0 0 0 0 0

rotate-object jet y=-63.43

translate-object jet x=-4500 z=500
set-collision-check 0

end

FILE: SRB.DAT

; SRB.DAT

; MODELING OF SOLID ROCKET

; BOOSTER AFT SKIRT

move x=2000 y=0 z=0

draw x=1250 y=0 z=2500

translate x=0 y=0 z=600

rev-surface

store-file srb

end

FILE: T-TABLE.DAT

, T-TABLE.DAT

, MODELING OF ROTARY TURNTABLE

, WORKCELL COORDINATE FRAMES

clear

f-joint-i

f-joint-i+l

store-link t-table.loc

- 127 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbflt University

; BASE LINK

clear

cylinder r=2000 h=400
store b

clear

f-joint-i

translate x=0 y=0 z=-200
add b

store b

clear

r-joint-i+l

translate x=0 y=0 z=200
add b

store b

store-link t-table.10

; FIRST LINK

clear

cylinder r=2000 h=200

store b

clear

r-joint-i

translate x=0 y=0 z=-100

add b

store b

clear

r-joint-i+l

translate x=0 y=0 z=100
add b

store b

store-link t-table.12

end

FILE: JET.DAT

cylinder r=12.7 h=500

translate x--0 y=0 z=250
store b

clear

move x=0 y=0 z=0

draw x=200 y=0 z=344

draw x=200 y=. 1 z=344

- 128-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

add b

store b

clear

move x=O y=O z=O

draw x=200 3I=0 z=344

draw x=200 y=. 1 z=344
rotate z=60

add b

store b

clear

move x=O y_O z_O

draw x=200 y_O z_344

draw x_200 y_. 1 z=344
rotate z= 120

add b

store b

clear

move x=O y=O z=O

draw x=200 y=O z=344

draw x=200 y=. 1 z=344
rotate z= 180

add b

store b

clear

move x--O y=O z=O

draw x=200 y=O z=344

draw x=200 y=. 1 z=344

rotate z=240

add b

store b

clear

move x=O y=O z=O

draw x=200 y=O z=344

draw x=200 y=. 1 z=344
rotate z=300

add b

store-file jet
end

FILE: STAND.DAT

clear

cylinder r=l O0 h=300

translate x=O y=550 z=150
store b

- 129 -

Fhud Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

clear

cylinder r= 100 h=300

translate x=-476 y=-275 z=150
add b

store b

clear

cylinder r=100 h=300

translate x--476 y=-275 z=150

add b

store b

clear

cylinder r=650 h=100

translate x=0 y=0 z=350
add b

store-file stand

end

FILE: T3-MM.DAT

.__t_t_t__t__ttt_t_t__t_

, MODELLING THE T3 ROBOT

._________*_

SET-N-FACE N---15

CLEAR

F-JOINT-I

F-JOINT-I+I

STORE-LINK T3.LOC

._________
't

, MODELLING THE ROBOT'S BASE LINK

CLEAR

TRUNCATED-CONE RL=406.4 RU=254 1-1=914.4

TRANSLATE X=0 Y=0 Z=393.7

STORE B

CLEAR

CYLINDER R=482.6 1-1--88.9

TRANSLATE X=0 Y=0 Z=44.45

F-JOINT-I

ADD B

STORE B

CLEAR

- 130-

Final Report: Development of ROBOSIM for Academlc/Indmtrtal U_ Vanderbil! University

R-JOINT-I+I

TRANSLATE X=0 Y=0 Z=1509.27

ADD B

STORE-LINK T3.L0

; MODELLING THE ROBOT'S FIRST LINK

SET-COLOR 1=3

CLEAR

CYLINDER R=279.4 H=101.6

TRANSLATE X=0 Y=0 Z=50.8

STORE B

CLEAR

BOX X=254 Y=50.8 Z=508

TRANSLATE X=0 Y=-101.6 Z=355.6

STORE C

TRANSLATE X=0 Y=203.2 Z=0

ADD C

ADD B

TRANSLATE X=0 Y=0 Z=-508

STORE B

CLEAR

CYLINDER R--203.2 H=355.6

TRANSLATE X=0 Y=0 Z=-304.8

R-JOINT-I+ 1

ROTATE X=90.

R-JOINT-I

ADD B

STORE-LINK T3.L1

.________

MODELLING ROBOT LINK 2

SET-COLOR I= 12

CLEAR

STORE B

STORE C

STORE D

BOX X=152.4 Y=152.4 Z=152.4

TRANSLATE X=-76.2 Y=0 Z=0

CYLINDER R=76.2 H=152.4

- 131 -

FinalReport:DevelopmentofROBOSIMforAcademlc/IndmtrlalUse Vm_derbHtU_iversity

ROTATE Z=-30.

R-JOINT-I+I

TRANSLATE X=1016 Y=0 Z=0

STORE B

CLEAR

BOX X=1016 Y=152.4 Z=152.4

TRANSLATE X=355.6 Y=76.2 Z=0

ADD B

R-JOINT-I

STORE-LINK T3.L2

; MODELLING ROBOT LINK 3

SET-COLOR I=5

CLEAR

STORE B

STORE C

STORE D

BOX X=762 Y=152.4 Z=152.4

TRANSLATE X---381 Y=0 Z=0

ROTATE Z=-I 1.54

TRANSLATE X---127 Y=0 Z=0

BOX X=254 Y=152.4 Z=152.4

TRANSLATE X =- 127 Y=0 Z=0

R-JOINT-I+I

TRANSLATE X=1016 Y=0 Z--0

CYLINDER R=76.2 H=152.4

R-JOINT-I

STORE-LINK T3.L3

; MODEL FOURTH ROBOT LINK

SET-COLOR I= 13

CLEAR

STORE B

STORE C

STORE D

CYLINDER R=63.5 H=96.52

R-JOINT-I

STORE B

CLEAR

- 132 -

Final Report: Development of ROBOSIM for Acadendc/Indmtrlal Use Vanderbflt UnivevJIty

R-JOINT-I+I

CYLINDER R=63.5 H=101.6

ROTATE X=-90.

TRANSLATE X=203.2 Y=0 Z=0

STORE C

CLEAR

BOX X=76.2 Y=76.2 Z=76.2

TRANSLATE X=101.6 Y=0 Z=0

ADD B

ADD C

STORE-LINK T3.L4

._______

; BUILD 5TH DEGREE OF FREEDOM WRIST PITCH

SET-COLOR 1=7

CLEAR

STORE B

STORE C

STORE D

CYLINDER R=88.9 H=127

TRANSLATE X=0 Y=0 Z=76.2

BOX X=177.8 Y=177.8 Z=25.4

TRANSLATE X=0 Y=0 Z=165.1

STORE B

CLEAR

BOX X=25.4 Y=177.8 Z=215.9

TRANSLATE X=-63.5 Y=0 Z=44.45

STORE C

TRANSLATE X=127 Y=0 Z=0

ADD B

ADD C

ROTATE Y=90.

STORE B

CLEAR

CYLINDER R=63.5 H=76.2

TRANSLATE X=0 Y=0 Z=114.3

ADD B

STORE B

CLEAR

R-JOINT-I+I

ROTATE X=90.

R-JOINT-I

ROTATE Z=90.

- 133 -

Fhud Report: Development of ROBOSIM for Acadenflc/lndtmtrlal U_e Vanderbflt University

ADD B

STORE-LINK T3.L5

; BUILD 6TH DEGREE OF FREEDOM

SET-COLOR I=l 1

CLEAR

STORE B

STORE C

STORE D

F-JOINT-I+I

TRANSLATE X=0 Y=0 Z=44.45

CYLINDER R=101.6 H=76.2

TRANSLATE X=0 Y=0 Z=63.5

CYLINDER R=76.2 H=50.8

TRANSLATE X=0 Y=0 Z=330.2

R-JOINT-I

STORE-LINK T3.L6

; BUILD END-EFFECTOR

; LOOKS LIKE A CYLINDRICAL ROD

CLEAR

STORE B

STORE C

STORE D

; BUILD A COORDINATE FRAME FOR END OF TOOL TIP

;LOAD-FILE AXIS.TCP

; DEFINE ARM CONTROL POINT

F-JOINT-I+I

ROTATE Z=90.

TRANSLATE X=O Y=0 Z=177.8

STORE B

CLEAR

CYLINDER R=12.7 H=152.4

TRANSLATE X=0 Y=0 Z=76.2

ADD B

- 134-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt Unlvetndty

STORE B

CLEAR

F-JOINT-I

ADD B

STORE-LINK T3.L7

END

FILE: POS

home 0.00 45.00 -135.00 0.00 90.00 0.00

h 0.00 0.00 0.00 0.00 0.00 0.00

pos9 0.00 77.50 -57.50 -45.00 90.00 0.00

pos8 0.00 83.50

pos7 0.00 88.00

pos6 0.00 86.50

pos5 0.00 81.50

pos4 0.00 75.00

pos3 0.00 55.00

pos2 0.00 37.50

-77.00 -35.00 90.00 0.00

-98.50 -14.50 90.00 0.00

-111.30 -1.00 90.00 0.00

-121.50 13.00 90.00 0.00

-128.50 22.00 90.00 0.00

-136.00 58.50 90.00 0.00

-134.00 70.75 90.00 0.00

posl 0.00 25.00 -130.00 73.00 90.00 0.00

posl0 0.00 59.50 -15.50 -70.00 90.00 0.00

FILE: DEMO.CMD

set-echo 1

minimal-step 1
drive t3 90 45 -135 0 90 0

drive t3 posl

translate-object jet x=4000

minimal-step 1

drive t-table 180 0 0 0 0 0

translate-object jet x=-4000

minimal-step 100

drive t3 pos2

translate-object jet x=4072.5 z=245

minimal-step 1
drive t-table 360 0 0 0 0 0

translate-object jet x=-4000

minimal-step 100

drive t3 pos3

translate-object jet x=4072.5 z=245

minimal-step 1

drive t-table 540 0 0 0 0 0

translate-object jet x=-4000

minimal-step 100

- 135-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

drive t3 pos4

translate-object jet x=4072.5 z=245

minimal-step 1

drive t-table 720 0 0 0 0 0

translate-object jet x=-4000

minimal-step 100

drive t3 pos5

translate-object jet x=4072.5 z=245

minimal-step 1
drive t-table 900 0 0 0 0 0

translate-object jet x=-4000

minimal-step 100

drive t3 pos6

translate-object jet x=4072.5 z=245

minimal-step 1
drive t-table 1080 0 0 0 0 0

translate-object jet x=-4000

minimal-step 100

drive t3 pos7

translate-object jet x=4072.5 z=245

minimal-step 1

drive t-table 1260 0 0 0 0 0

translate-object jet x=-4000

mmtmal-step 100

drive t3 pos8

translate-object jet x=4072.5 z=245

minimal-step 1

drive t-table 1440 0 0 0 0 0

translate-object jet x=-4000

mlmmal-step 100

drive t3 pos9

translate-object jet x=4072.5 z=245

mlmmal-step 1
drive t-table 1620 0 0 0 0 0

translate-object jet x=-4000

m_mmal-step 100

drive t3 poslO

translate-object jet x---4072.5 z=245

m_mmal-step 1
drive t-table 1800 0 0 0 0 0

translate-object jet x=-4000
drive t3 90 70 -40 -45 90 0

drive t3 home

end

- 136 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

ROBOSIM

RODAG _i

end
_OBARG>

Figure E.9. Sample display for Example 7.

EXAMPLE 8: SPACE STATION CONCEPT WITH SERVICING ROBOT

This example contains all of the files necessary to simulate the space station and

run a demonstration of movement of the solar panels and servicing robot. The program

may be run directly from the a-drive. To run the program, change to the ROBOSIM

directory and type 'init' at the <A:LROBOSIM> prompt. This will set the path to the

FONTS directory and the DRIVERS directory. Next type 'robo386 ° at the

<AAROBOSIM> prompt. After loading the necessary files, the space station simulation

will appear on the screen. To run the demonstration, type 'load demo.cmd' at the

ROBAG> prompt.

If you wish to load the files onto your hard disk and run the program from there,

you will have to edit the INIT.BAT file accordingly. For example, if the hard disk

directory used is <C:W, OBOSIM> then you merely need to change the drive designation

from 'a' to 'c' in the two lines of the INIT.BAT file. If you use a directory other than

ROBOSIM on your hard disk, then the directory designation must be changed also. For

example, if the hard disk directory used is <C:\SSTATION>, then you must change the

drive and directory designations from 'a:krobosim...' to e:\sstation...' in the two lines of the
INIT.BAT file.

The robot and solar panels may be moved by issuing appropriate commands from

the ROBAG> prompt. The servicing robot is called 'r'. The rotatable solar panels

attached to the main trust assembly are called 'cl' and 'c2'. The rear and forward main

solar panels are called 'mcl' and 'me2'. The box on top of the main trust near the left-hand

end is called bl. Refer to your ROBOSIM manual for a listing and description of the

various commands that may be used to move the robot and/or solar panels.

- 137-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

If you already have ROBOSIM installed on your computer, you may wish to install

the space station files in a subdirectory there. If so, you do not need to transfer the

FONTS and DRIVERS directories to this subdirectory since they already exist in your

ROBOSIM directory. Also, you can delete the ROBO386.EXE, INIT.BAT, and

GO32.EXE files since they exist, as well, in your ROBOSIM directory.

FILE: SETUP.CMD

; SETUP.CMD

; COLOR DEFINITIONS

define-color red 1.00 0.00 00.0

define-color green 0.00 1.00 0.00
define-color blue 0.00 0.00 1.00

define-color black 0.00 0.00 0.00

define-color purple 1.00 0.00 1.00

define-color cyan 0.00 1.00 1.00

define-color yellow 1.00 1.00 0.00
define-color white 1.00 1.00 1.00

define-color rose 0.70 0.20 0.20

define-color gold 0.50 0.50 0.20

define-color it-grey 0.75 0.75 0.75

, VIEW COMMANDS

look-at 0 80 0

look-from 250 250 250

; COLLISION CHECK

set-collision-check 0

; ROBOT

make-agent r robot purple

translate-object r y=100

; ***

; MAIN STRUCTURE AND LIVING MODULES

; ***

make-robosim-object main main.dat main yellow

make-robosim-object livinmod livinmod.dat livinmod red

- 138 -

Final Report: Development of ROBOSIM for Academic/Industrial U_ VanderbUt Unive_ity

; ROTATABLE SOLAR PANELS ATTACHED TO MAIN TRUST

1

make-agent cl cells green

make-agent c2 cells cyan

translate-object c2 y=-80

; REAR AND FORWARD MAIN SOLAR PANELS

make-agent mc I maincls 1 blue

make-agent me2 maincls2 white

; ***

; COMMUNICATION DISHES

make-robosim-object dishes dishes.dat dishes white

, BOX (MOVED BY ROBOT)

make-object bl box 5 5 5 cyan

translate-object b 1 x=5 y=5 z=2.5

end

FILE: SUBCELLS.DAT

; This file creates the fixed set of cells attached

; to the subframe

cylinder r=.05 h=20

rotate x=90

translate x=0 y=10 z=0

store b

clear

box x=5 y=20 z=. 1

translate x=2.55 y= 10 z=0
store d

rotate y-=180
add d

add b

store d

clear

box x=10.2 y=.l z=8

translate x=0 y-=-.05 z=0
add d

translate x=0 y=. 1 z=0

- 139-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbllt University

rotate x=-90

store-file subcells

end

FILE: BELT.DAT

; This files constructs the conveyor belt attached

; to the bottom of the main support trust

; Some of the materials on the belt are also constructed

box x=6 y=160 z=. 1

translate x=5 y=80 z=-9.95

store b

clear

box x=4 y=6 z=4

translate x=5 y=53 z=-7.95
add b

store b

clear

box x=5 y=4 z=6

translate x=5 y=63 z=-6.95
add b

store b

clear

box x=5 y=8 z=5

translate x=5 y=97 z=-7.45
add b

store b

clear

box x=4 y=3 z=3

translate x=5 y=105 z=-8.45
add b

end

FILE: ROBOT.DAT

; This file constructs a robot arm

$

l

f-joint-i

translate x=0 y= 100 z=0

- 140 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

f-joint-i+ 1
store-link robot.loc

; Build robot base

clear

f-joint-i
store d

clear

box x=.5 Y=160 Z=.5

translate x=2.5 Y=80 z=0

store b

rotate y=180
add b

rotate y=-90
translate x=0 Y=0 Z=-5

store b

clear

p-joint-i+l
rotate x=90

rotate y=-90
translate x =- 1 Y=80 Z=-5

add b

add d

store-link robot.10

, Build robot's first link

clear

p-joint-i

rotate x=90

box x=6 Y=8 Z=2

store b

clear

box x=l y=l Z=4
translate x=0 Y=0 z=3

add b

store b

clear

r-joint-i+l

translate x=0 y=0 z=5.5
add b

store-link robot.ll

I

; Build robot's second link

- 141 -

FinalReport:DevelopmentofROBOSIMforAcademic/IndustrialUse. Vanderbilt University

clear

cylinder r=.5 h=l

rotate y=90

r-joint-i
store b

clear

box x= 1 y= I Z=4
rotate x=90

translate x=0 y=-2.5 z=0

store c

clear

r-joint-i+l
rotate x=90

translate x=0 y=-5 z=0
add c

add b

store-link robot.12

, Build third link

clear

cylinder r=.5 h = 1

rotate y=90

r-joint-i

rotate y=90
store b

clear

box x=l Y=I Z=10

rotate x=90

translate x=0 y=5.5 z=0

store c

clear

r-joint-i+l
rotate x=-90

rotate z=90

translate x=0 y=l 1 z=0
add c

add b

store-link robot.13

, Build fourth link

clear

cylinder r=.5 h=l

- 142-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

r-joint-i

rotate x=90

store b

clear

box x= 1 y= 1 Z=8

translate x=0 y=0 z=4.5

store c

clear

r-joint-i+l

rotate x=90

translate x=0 y=0 z=9

add b

add c

store-link robot.14

; Build fifth link

clear

cylinder r=. 5 h = 1

r-joint-i
rotate x=90

store b

clear

box x =1 Y=I Z=3

translate x=0 y=0 z=2

add b

store b

clear

r-joint-i+l

translate x=0 y=0 z=3.5
add b

store-link robot.15

, Build sixth link

clear

box x=l y=2 z=.2

translate x=0 y=0 z =. 1
store b

clear

box x=l y=.2 z=.8

translate x=0 y=-.5 z=.6

store c

translate x=O y=l z=O
add c

- 143 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderblit University

add b

store b

clear

cylinder r=l h=4
rotate x=90

translate x=0 y=0 z=1.5

add b

r-joint-i
store b

clear

f-joint-i+l

translate x=0 y=0 z=.01

add b

store-link robot.16

, Build end effector

clear

f-joint-i+l

translate x=0 y=0 z=.01

f-joint-i
store-link robot.17

end

FILE: MAINCLS1.DAT

; Subframe and attachment

clear

cylinder r=2 h=4

translate x=0 y=0 z=2
store d

clear

execute-file 2cubes.dat

store c

translate x=0 y=20 z=0
add c

translate x=0 y=20 z=0
add c

translate x---5 y=0 z--5

store c

, Bottom set of cells for the subframe

clear

- 144 -

Final Report: Development of ROBOSIM for Acadendc/Industrial Use VanderbHt University

execute-file subcells.dat

rotate z=-90

translate x=O y=15 z=-5
store b

translate x=0 y=40 z=0
add b

add c

store c

; Add a box in the subframe

clear

box x=8 y=8 z=8

translate x=0 y=5 z=-1
add c

store c

clear

move x=7.05 y=0 z=0

draw x=-7.05 y=0 z=0

draw x=-7.05 y=.001 z=0
store b

rotate z=90

add b

rotate z=45

rotate y=90

translate x=-5 y=l 5 z=0
store b

translate x=10 y=0 z=0
add b

store b

translate x=0 y=40 z=0
add b

add c

store c

, Add forward maincells (fixed with respect to subframe)

clear

execute-file maincells.dat

translate x=0 y= 15 z=0

add c

rotate x=90

translate x=0 y=0 z=4

store c

clear

- 145 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

cylinder r=2 h=4

translate x=0 y=0 z=2
add c

store c

clear

f-joint-i

f-joint-i+ 1
store-link maincell.loc

clear

f-joint-i
store b

clear

r-joint-i+l
rotate x=90

translate x=5 y=0 z=-5
add b

store-link maincell.10

clear

r-joint-i
add c

store c

clear

r-joint-i+ 1
rotate x=-90

rotate z=90

translate x=0 y=0 z=59
add c

store-link maincell.l 1

clear

; Add rear maincells (rotable with respect to subframe)

execute-file mainceils.dat

rotate y=90

r-joint-i

store c

clear

f-joint-i+ 1

translate x=0 y=0 z=. 1
add c

store-link maincell.12

end

FILE: 2CUBES.DAT

- 146 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbiit University

;ECHO OFF

; This file draws two cubes attached to each other

; with X=Y=Z=10. dimensions.

; The four diagonal ends of the cubes are at:

; X=0. Y=0. Z=0.

; X=10. Y=0. Z=-10.

; X=0. Y=20. Z=0.

X=10. Y=20. Z=-10.

; The output is stored in file 2CUBES.OUT

MOVE X=0.,Y=0.,Z=0.

DRAW X=I 0.,Y=0.,Z=0.

draw x--10 y=.01 z=0

TRANSLATE X=- 5., Y=O.,Z=O.

STORE B

TRANSLATE X=5.,Y=O.,Z=O.

STORE C

TRANSLATE X=0.,Y= 10.,Z=0.

ADD C

STORE C

CLEAR

LOAD B

ROTATE Z=90.

TRANSLATE X=0.,Y=5.,Z=0.

STORE D

TRANSLATE X-- 10.,Y=0.,Z=0.

ADD D

ADD C

STORE D

STORE C

CLEAR

MOVE X=0.,Y=0.,Z=0.

DRAW X=14.1,Y=0.,Z=0.

draw x=14.1 y=.01 z=0
ROTATE Z=-45.

TRANSLATE X=0.,Y= 10.,Z=0.

ADD C

STORE C

ROTATE Y=90.

STORE B

TRANSLATE X=l 0.,Y=0.,Z=0.

ADD B

ADD C

STORE C

- 147-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

CLEAR

ADD D

TRANSLATE X=0.,Y=0.,Z =- 10.

ADD C

STOKE C

CLEAR

; Build reverse cube

ADD C

ROTATE Z =-180.

TRANSLATE X = 10.,Y=20.,Z=0.

ADD C

;STORE-FILE 2CUBES.OUT

;store-file 2cubes

;LOOK-FROM X=20.,Y=I 0.,Z=30.

;LOOK-AT X=0.,Y=I 0.,Z=0.

;VIEW

END

FILE: MAINCLS2.DAT

, Subframe and attachment

clear

cylinder r=2 h=4

translate x=0 y=0 z=2

store d

clear

execute-file 2cubes.dat

store c

translate x=0 y=20 z=0
add c

translate x=0 y=20 z=0

add c

translate x=-5 y=0 z=5

store c

; Bottom set of cells for the subframe

clear

execute-file subceiis.dat

- 148-

Final Report: Development ofROBOSIM forAcadendcJlndustrlai Use Vanderbilt University

rotate z=-90

translate x=0 y=l 5 z=-5
store b

translate x=0 y=40 z=0
add b

add c

store c

, Add a box in the subframe

clear

box x=8 y=8 z=8

translate x=O y=5 z=-I
add c

store c

clear

move x=7.05 y=O z=O

draw x=-7.05 y=O z=O

draw x=-7.05 y=.O01 z=O
store b

rotate z=90

add b

rotate z=45

rotate y=90

translate x=-5 y=15 z=O
store b

translate x=lO y=O z=O

add b

store b

translate x=O y---40 z=O
add b

add c

store c

; Add forward mainceIls (fixed with respect to subffame)

clear

execute-file maincells.dat

translate x=0 y= 15 z=0
add c

rotate x=90

translate x=O y=O z=4
store c

clear

cylinder r=2 h=4

- 149 -

Fhud Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

translate x=0 y=0 z=2
add c

store c

clear

f-joint-i
rotate x=180

rotate y=180

translate x = 10 y= 160 z=0

f-joint-i+ 1

store-link maincell.loc

clear

f-joint-i
store b

clear

r-joint-i+l
rotate x=90

translate x=5 y=0 z=-5

add b

store-link maincell.10

clear

r-joint-i
add c

store c

clear

r-joint-i+ 1

rotate x=-90

rotate z=90

translate x=0 y-=0 z=59
add c

store-link maincell.l 1

clear

; Add rear maincells (rotable with respect to subfi'ame)

execute-file maincells.dat

rotate y=90

r-joint-i

store c

clear

f-joint-i+1

translate x=O 3,=0 z=. 1
add c

store-link maincell.12

end

- 150 -

Flnal Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

FILE: MAIN.DAT

; Construction of main trust assembly

J

execute-file 2cubes.dat

store b

translate x=0 y=20 z=0
add b

store c

translate x=O y---40 z=O

add e

store d

translate x=0 y=80 z=0
add d

store d

; Construction of conveyer belt in the main frame

clear

execute-file belt.dat

add d

store d

; Add boxes and attach them to the main frame

clear

box x---4 y=3 z=6

translate x---Oy=5 z=- 1

box x=4 y=3 z=8

translate x=l 2 y---43.5 z=-6
add d

store-file main

end

FILE: CELLS.DAT

; This file constructs the two single panel solar cells

; attached to the main trust assemble

clear

f-joint-i

translate x=0 y=-100 z=0

f-joint-i+l

store-link ceUs.loc

clear

- 151 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

f-joint-i
store b

clear

r-joint-i+l
rotate x=-90

rotate z=90

translate x=2.5 y=15 z=-7.9
add b

store-link cells.lO

clear

set-nface n=l 0

cylinder r=2 h=5

cylinder r=l h=5

translate x=O y=O z=2.5
store b

clear

cylinder r=.2 h=l 5

translate x=O y=O z= 12.5

add b

store b

clear

box x=.6 y=12.2 z=.4

translate x=O y=O z=20.2

add b

store b

clear

cylinder r=. 1 h=24
rotate x=90

store c

clear

box x=6 y=24 z=. 2

translate x=3 y=O z=O
store d

rotate y= 180

add d

add c

rotate x=90

rotate z=90

translate x=O y=O z=32.4
add b

- 152-

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt Unlver_ity

store b

)

rotate y=90

rotate y=90

store d

clear

r-joint-i
store c

clear

r-joint-i+l

add c

add d

store-link cells.i 1

clear

end

FILE: ATTBARS.DAT

; This file draws the cylidrical structures that attaches

; the main frame with the two other sub-frames.

;LOOK-FROM X=I 8.,Y=- 10.,Z=-5.

;LOOK-AT X=0.,Y=0.,Z=0.

BOX X=0.1,Y=5.9,Z=0.

TRANSLATE X=0.,Y=2.95,Z=0.
ROTATE X=32.5

TRANSLATE X=0.,Y=2.,Z=0.
STORE B

ROTATE Z=90.

ADD B

ROTATE Z=90.

ADD B

ROTATE Z=90.

ADD B

ROTATE Z=45.

;STORE-FILE ATTBARS.OUT

store-file attbars

END

FILE: MAINCELL.DAT

This file creates the main solar cells and the

attaching bars and support cylinders.

- 153 -

Final Report: Development of ROBOS1M for Acadendc/lndustrtal Use Vanderbilt University

clear

cylinder r=5 h=120
rotate x=90

translate x=0 y=60 z=0

scale x=.25 y=.25 z=.25

store d

• Solar cell plates

clear

box x=10 y=30 z=.2

translate x=6.3 y=l 5 z=0

store b

rotate y= 180
add b

add d

translate x=0 y=.3 z=0
store d

; Ends of each cell structure

clear

cylinder r=1.8 h=.3

box x=22.8 y=2.5 z=.3

rotate x=90

translate x=0 y=. 15 z=0
store b

translate x=0 y=30.3 z=0

add b

add d

translate x=0 y=8 z=0
store d

; Connecting cylinder between two cells

clear

cylinder r=l.6 h=8

rotate x=90

translate x=0 y=4 z=0
add d

store d

rotate x= 180

add d

store d

clear

- 154 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

cylinder r= 1.7 h=. 1
store b

clear

rotate x=90

translate x=O y=5 z=O
store b

translate x=O y=-10 z=O
add b

add d

rotate z=90

end

FILE: SUBFRAME.DAT

; Subframe and attachment

clear

cylinder r=2 h=4

translate x--O y=O z=2
store d

clear

execute-file 2cubes.dat

store c

translate x=O y=20 z=O
add c

translate x=O y=20 z=O
add c

translate x=-5 y=O z=5

store c

; Bottom set of cells for the subframe

clear

execute-file subcells.dat

rotate z=-90

translate x=0 y=l 5 z=-5
store b

translate x=0 y=40 z=0
add b

add c

store c

, Add a box in the subframe

clear

- 155-

Fhud Report: Development of ROBOSIM for Acadenflc/Industrtal Use Vanderbllt University

box x=8 y=8 z=8

translate x=O y=5 z=-I

add c

store c

clear

move x=7.05 y=O z=O

draw x=-7.05 y=O z=O

draw x=-7.05 y=.O01 z=O
store b

rotate z=90

add b

rotate z=45

rotate y=90

translate x=-5 y=15 z=O
store b

translate x=lO y=O z=O
add b

store b

translate x=0 y=40 z=0
add b

add c

store c

; Add forward maincells (fixed with respect to subframe)

clear

execute-file maincells.dat

translate x=0 y= 15 z=0

add c

rotate x=90

translate x=0 y=0 z=4
store c

clear

cylinder r=2 h=4

translate x=O y=O z=2
add c

store c

clear

f-joint-i

translate x--0 y=0 z=0

f-joint-i+ 1
store-link subframe.loc

clear

f-joint-i

store b

- 156 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

clear

r-joint-i+l
rotate x--90

translate x=5 y=0 z=-5

add b

store-link subframe.10

clear

r-joint-i

add c

store c

clear

r-joint-i+l
rotate x=-90

rotate z=90

translate x=0 y=0 z=59
add c

store-link subframe.l 1

clear

; Add rear maincells (rotable with respect to subframe)

execute-file maincells.dat

rotate y=90

r-joint-i

store c

clear

f-joint-i+l

translate x=0 y=0 z=. 1
add c

store-link subframe.12

end

FILE: LIVINMOD.DAT

set-nface n= 10

cylinder r=7 h=30
store b

clear

cylinder r=2 h=l

translate x=0 y=0 z= 15.5
add b

store b

clear

cylinder r=2 h=l

translate x=0 y=0 z=- 15.5

- 157 -

Final Report: Development of ROBOSIM for Acadendcflndustrial Use Vanderbilt University

add b

;store c

translate x=O y=8.5 z=O
store b

translate x=O y=-17 z=O
add b

store b

;store-file livinmod

;end

clear

cylinder r=2 h=l
rotate x=90

translate x=O y=O z=-22
add b

store b

clear

cylinder r=2 h=l
rotate x=90

translate x=O y= 15 z=-22
add b

store b

clear

cylinder r=2 h=l

rotate x=90

translate x=O y=-I 5 z=-22
add b

store b

clear

cylinder r=6 h=14

rotate x=90

translate x=O y=7.5 z=-22
add b
store b

clear

cylinder r=6 h= 14

rotate x=90

translate x=O y=-7.5 z=-22

add b

store d

;store-file livinmod

;end
clear

cylinder 1"=5 h=lO

translate x=O y=O z=5.5

cylinder r=2 h= 1

- 158 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

translate x=O y=O z=6.5

sphere r=6
store b

clear

cylinder r=2 h = 1
rotate x=90

translate x=O y=6.5 z=O

store c

rotate z=90

add c

store c

rotate z= 180

add c

add b

;store c

translate x=O y=O z=22

store c

clear

cylinder r=7 h=30

store b

clear

cylinder r=2 h = 1

translate x=O y=O z=l 5.5

add b

store b

clear

cylinder r=2 h=l

translate x=O y=O z=- 15.5
add b

add c

rotate x=90

translate x=O y=O z=23
add d

store d

clear

cylinder r=5 h=lO

translate x=O y=O z=5.5

cylinder r=2 h = 1

translate x=O y=O z=6.5

sphere r=6
store b

clear

cylinder r=2 h=l

rotate x=90

- 159-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

translate x=O y=6.5 z=O

store c

rotate z=90

add c

store c

rotate z=180

add c

add b

store c

clear

cylinder r=2 h=l

translate x=O y=O z=-6.5

add c

rotate y=90

translate x= 14 y=O z=O

store c

rotate z=180

add c

translate x=O y=O z=-8.5

rotate x=90

translate x=O y=O z=23

add d

store b

clear

cylinder r=7 h=30

translate x=O y=O z= 15.5

cylinder r=2 h= 1

store c

clear

cylinder r=2 h=l

translate x=O y=O z=31.5

add c

translate x=O y=8.5 z=O

store c

clear

cylinder r=7 h--22

translate x=O y=O z= 11.5

cylinder r=2 h=l

store d

clear

cylinder r=2 h=l

translate x=O y=O z=23.5
add d

- 160 -

Final Report: Development of ROBOSIM for Academic/Industrial Use Vanderbilt University

translate x=O y----8.5 z=0
add c

store c

clear

cylinder r=6 h=6

translate x--0 y=0 z=3.25

cylinder r=2 h=.5

translate x=0 y=0 z=7.25

rotate y=90

store d

rotate z=180

add d

translate x=0 y=-8.5 z=14
add c

translate x=O y=O z=30.5
add b

rotate y=-90

rotate z=180

translate x=0 y=70 z=-I 7
store-file livinmod

end

FILE: DISHES.DAT

, This file constructs the two communication dishes attached

, to the main support trust
clear

move x=0 y=0 z=0

draw x=0 y=7.2 z=0

draw x=0 y=7.2 z=.05

rotate x=24.6

translate x=0 y=-7.05 z=0
store b

rotate z=90

add b

store b

rotate z=180

add b

rotate z---45

store b

clear

cylinder r=.5 h=20

translate x=O y=O z= 13

add b

store b

- 161 -

Final Report: Development of ROBOSIM for Academlcflndustrial Use Vanderbilt University

clear

move x=O y=2.1 z=. 5

draw x=O y=l z=5.12

draw x=.05 y=l z=5.12
store c

rotate z=120

add c

store c

clear

move x=O y=2.1 z=. 5

draw x=O y=l z=5.12

draw x=.Ofi y=l z=5.12
rotate z=240

add c

store c

clear

cylinder r=l h=. 1

translate x=O y=O z=5.25
add c

translate x=O y=O z=23

add b

store b

clear

move x=O y=0.5 z=O

draw x=O y=5.3 z=1.2

draw x=O y=3.7 z =. 8

draw x=O y=2.1 z=.4

draw x=O y=.5 z=O
rev-surface

translate x=O y=O z=23
add b

store b

translate x=5 y=25 z=O

store c
clear

add b

translatex=5 y=125 z=O

add c

store-filedishes

end

FILE: DEMO.CMD

look-at 0 80 0

look-from 250 250 250

- 162 -

FinalReport:DevelopmentofROBOSIMforAcadend¢/IndustrialUse VanderblltUniversity

minimal-step 1
drive mcl -45 0 0 0 0 0

drive mcl -45 90 0 0 0 0

drive me2 45 0 0 0 0 0

drive me2 45 -90 0 0 0 0

drive el 90 0 0 0 0 0

drive c2 -90 0 0 0 0 0

look-at 0 0 0

look-from 200 0 0

drive me 1 0 0 0 0 0 0

minimal-step 3

drive me 1 90 0 0 0 0 0

drive mc 1 90 90 0 0 0 0

minimal-step 1
look-at 0 160 0

look-from 200 160 0

drive mc2 0 0 0 0 0 0

minimal-step 3
drive mc2 90 0 0 0 0 0

drive mc2 90 90 0 0 0 0

look-at 0 80 0

look-from 120 80 120

drive el 0 0 0 0 0 O, drive c2 0 0 0 0 0 0

minimal-step 1

look-from -60 80 200

drive r 65.5 0 0 0 0 0

look-at 0 0 0

look-from -40 0 40

minimal-step 1
drive r 65.5 0 -80 10 40 0

grasp r b 1

drive r 65.5 0 0 0 0 0

look-at 0 80 0

look-from -120 80 120

drive r -75 0 0 0 0 0

look-at 0 160 0

look-from -40 160 40

minimal-step 1

drive r -75 0 -80 10 40 0

release r b 1

drive r -75 0 0 0 0 0

look-at 0 80 0

look-from-120 80 120

drive r 0 0 0 0 0 0

look-at 0 80 0

- 163 -

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbUt University

look-from 250 250 250

minimal-step 10

drive mcl 0 0 0 0 0 0, drive mc2 0 0 0 0 0 0

end

.OOOSMM _I

[JOGARG>

Figure E. 10. Space station concept (sample display number 1), Example 8.

ROBOSIM I_I|_

n0t3Ac I_

ROB&RG>dzi'm_:2 4S -90 0 0 0 0
ROBkRG>

Figure E. 11. Space station concept (sample display number 2), Example 8.

- 164 -

Final Report: Development of ROBOSIM for AcadendcJlndustrlal Use Vanderbilt University

ROBOSIM

ROIIAG _I

ROBARG>dcive me1 90 0 0 0 0 0
[ROB_ >

Figure E. 12. Space station concept (solar panels), Example 8.

ROBOSIM l_!i_

.,I,.

]

.OEtAG _
ROBARG>iook-troa 200 160 0
ROBARG>

Figure E. 13. Space station concept (solar panels - 2), Example 8.

- 165 -

Final Report: Development of ROBOSIM for Acadendc/lndustrial Use VanderbUt University

ROROSIM

ROBARG>drive cl 90 0 0 0 0 0
sAx

Figure E. 14. Space station concept (sample display number 5), Example 8.

ROBO$1M L'_'_

ROBARG>drive r 65.5 0 -B0 10 40 0
ROBARG:,

Figure E. 15. Space station servicing robot (sample display number 1), Example 8.

- 166-

Final Report: Development of ROBOSIM for Academic/Industrial Use VanderbHt University

ROBOSlM

r 65.5 0 20 0 0 0

Figure E. 16. Space station servicing robot (sample display number 2), Example 8.

AOn^G _I
I_'OBk_:,drive r -7S 0 -80 10 40 0

Figure E. 17. Space station servicing robot (sample display number 3), Example 8.

- 167 -

FinalReport:DevelopmentofROBOSIMforAcademic/IndustrialUse VanderblltUniversity

BO

RorJ^G I_1
F_OBARG)drive r -75 0 0 0 0 0
_BARG >

Figure E. 18. Space station servicing robot (sample display number 4), Example 8.

- 168 -

